
N O . 7 3 International Edition J U L Y 1 9 8 4

for the Serious Computerist

siifljsbft J nsrlo'ism , >JooD sg 'to e # ^
P NQ r _lTPV f- pkq t- _ o w f

nooll s l J J i J - rijern nieJriuom , >JooO J-tadofl
£781- 3731-3181

Basic DVORAK Keyboard
Applesoft Compression

Better BASIC Hex Loader
HiRes Graphic Printouts
6809/68000 Comparison

Flight Simulator II

It all adds up...
HOME COMPUTERS

A
ATARI 6 0 0 X 1 $149

8 0 0 X L$889
W HILE SUPPLY LASTS

850 In te rface$159.00
1010 Recorder................................. ..$71.99
1020 Color P r in te r$219 .00
1QSS S o t Matrix P r in te r $ 2 9 9 .0 0

' 1027 L etter Q uality P r in te r .$ 2 6 9 .0 0
1080 D irect Connect Modem....$ 9 9 .9 9
1050 Disk D rive...........................$349.00
1064 Memory M odule................$125.00
Tbuch Tablet/Software................. $64.99
Light Pen/Softw are....................... $72.99
CX22 Track Ball............................ $39.99
709? A ta r i Logo............................$74.99
4018 P ilo t (Home).......$ 0 7 .9 9
4 0 S P ilo t (E d u c).......................... $ 9 9 .9 9
8 0 3 8 A tari P ilo t............................. $ 7 7 .9 9

.3 0 4 9 V isiCale $149 .99
488 C om m unicator IT.............$'19 90

1 2 0 0 X L CALL
.CALL
......$11.99
...... $7.99
.....$31.99
.....$31.99
.....$31.99

1 4 S O X L
CX30 Paddles
CX40 Jo y stick
4011 Star Haiders
4022 Pac Man
4025 D efender..............
8026 Dig Dug..................................$31.99
8031 Donkey Kong....................... $35.99
8034 Pole Position $37.99
8040 Donkey Kong J r $33.99
8 0 4 3 M s Paoman.......................... $37.99
8044 Soust.........................$37.99
804B Pongo..................................... *33 .99
8088 Moon Patrol..........................$33,99
4005 Assembler.................. ..$44.99
8126 M icrosoft Basic I or I I$64.99

DISK D RIVES FOR ATARI
PERCOM RANA

AT 88-SI............
at ee-si pd

QT Drive

..$279.00 1000..
TRAJC

AT-D2...
.$379.00 AT-D4

........ $299.00

.....$389.00

.....$509,00

ATARI
MEMORY B O A X m

APPLE/FRANKLIN
Axlon 32K ..$59.99 Axlon 128K.................................. $299.00
Axlon 48K..$99.99 A xlon 320K$849.00
Axlon 128K.................................... $299.00

ALIBH VOICE BOX
... . $119 00 A p p le .. .

DISKETTES

..$149.00

5V4
5V4

8”
8”

MAXELL
’ MD-1.......................................$24.99
’ MD-2.......................................$34.99
FD-1.. $39.99
FD-2 $4P 99

Lift _ $22.99
. - Value Tjfa ,$29.99

S t t " Dish Head C le an e r. $14.99

ELEPHANT
5Vi" SS/SD...................$18.49
5V4” SS/DD..$21.99
5V4” DS/DD......................................$26.99

DISK HOLDERS
INNOVATIVE CONCEPTS

Fllp-n-FUe 10$3.99
Filp-B-PUe 90$17.99
Flip n Pile 90 w/IocJc . .. $24.99
Hip-n-Ftfe (400,800 ftOMj $17 99

CONTROLLERS & JOYSTICKS
WICO

J o y s tic k
6 Wê y Juystauk.. . -
Bswep OrtP’.
8088 Jk^HtleJi
AS&ROTIC ?sak Ban
Appla TPak Ball .
Apple ArtsXdg

A ta ri (ROM)..
C-64 (ROM)....

K RAFT
J o y s tic k
A ta r i Single F ire
A ta r i Bw itth H itter-......
Apple Paddles
EBBff P ad d M
IBM Joystick

...$21.99
. $£2 39

....$21.99
$17 99

...$34 9 9
$34 99
$3T9ff-

K oala
..$79.99 IBM ...$99.99
.$ 7 9 .9 9 A pp le /F rank lin$85.99

..$41.99
„$12.S9
. $15 99
.$34.99

..$34 99
$46.99

AXIOM PRINTERS
AT-100 A ta ri In te rface P rin te r$ 2 3 9 .0 0
GP-100 Paralle l In te rface $199.00
GP-550 A ta ri B idirectional $319.00
GP-700 A ta ri Color P r in te r$489.00
GP-550 Parallel P r in te r$269.00

EMC
401 L etter Q uality $589.00
BX-80 Dot M atrix$269.00

C.ITOH
Gorilla B an an a $209.00
P row riter 8510P..........................$379.00
P row riter 1550F.........$599.00
A10 (18 cps)...................................$569.00
Hot Dot M atr ix CALL
F10-40..$999.00
F10-55... $1349.00

COMREX
ComWriter II L etter Q uality ..$499.00

DIABLO
620 L e tte r Q uality$949.00
630 L ette r Q uality $1749.00

DAXSYWRITSR
2 0 0 0 ...$999.00
Tractor Feed.................................. $109.00

EPSON
RX-80. RX-80FT. RX-100...............CALL
FX-80, FX-100................................... CALL
LQ 1500... CALL

ZDS
Prism 80...For C onfiguration.....CALL
P rism 32...For C onfigurationCALL

JUKI
6100... $499.00

ANCHOR
Volksmodem..................................... $59.99
Mark IL Serial.................................$79.99
Mark T i l (Auto AnsZAuto Dlal)$99.99
Mark X II (1200 Baud)............... $299.99
Mark TBS-8Q.................... ,$99.99
9 Volt Power Supply,...,..................$9.99

HATES
Sm artm odem 30 0$209.00
Sm artm odem 1200.......................$499.00
Sm artm odem 1200B.................... $449.00
Micromodem l ie $269.00
M icromodem 100.........................$299.00
Smart Com I I $89.99
Chronograph.................................. $199.00

MONITORS

M ANNESM AN TALLT
160L...$589.00
180L... $799.00
Spirit 80..$309.00

NEC
8023 Dot M atrix$389.00
8025 Dot M atrix$669.00
2010/15/30....................................... $749.00
3510/15/30$1369.00
7710/15/30 $1799.00

OKIDATA
82, 83, 84, 92, 93, 2350, 2410...CALL

OLTMPIA
Compact 2$479.00
Compact RO.................................. $509.00
ESW 3000.....................................$1449.00

SMXTH CORONA
TP-1000.. $449.00
Tractor Feed................................... $119.00

SILVER REED
500 L ette r Q uality$449.00
550 Letter Q uality$549.00
770 Letter Q uality$899.00

STAR
Gemini 10X................................... $299.00
Gemini 15X................................... $399.00
Serial B oard.....................................$75.00
Radix 10...$599.00
R adix 15.. $699.00

T08H ISA
1340.. $869.00
1351...$1699.00

TRANSTAR
120P... $469.00
130P... $649.00
315 Color.. $459.00

MODEMS
NOVATION

J -C a t..$99.99
C a t......................................$139.00
Sm art Cat 103............................. ..$179.00
Sm art Cat 103/212................... .$399.00
A u to C at..$219.00
212- A utoCat..............................$549.00
Apple Cat I I $249 00
212 Apple C at................................$449.00
Apple Cat 212 U p g ra d e $259.00
PC Cat Access 1 2 3 $399.00

ZENITH
ZT-1.. $339.00
ZT-10......................................$309.00,
ZT-11...,..,$369.00

AM SEX
300 G reen.......................................$149.00
300 Am ber......................................$159.00
310 A m ber......................................$169.00
Color 1..$279.00
Color 1 P lu s $299.00
Color 2 Plus.............................. $419.00
Color 3,........................$349,00
Color 4Tt IBM...........’..$699.00

'-.EMC .
1201 (12” Green).......$88.99
1201 Plus (12” Green Hi-Res)...$98.99
9191 P lus .. $249.00

GORILLA
12" G reen.. $88.99
12" Am ber..$95.99

NEC
JB 1260 Green,.......................... .$109.00
«*B, I2CH Green...... $149.99
JB- 1206- Amber.................$159.99
JB 1219 Color.................$259.00
JC 1216 RGB.................................$429.00
JC 1460 Color.............................. $359.00

PRINCETON GRAPHICS
MAX-12 A m ber............................$199.00
HX-12 RGB......................................$539.00
SRT-2 RGB......................................$649.00

SAKATA
SC-100 Color..................................$269.00
SG-1000 G reen............................... $129.00
SA-1000 A m ber............................. $139.00

TAXAN
210 Color RGB.............................. $299.00
400 Med-Res RGB.......................$319.00
415 Hi-Res RGB.......................... $439.00
420 Hi-Bes RGB (IBM) $489.00
100 12”' G reen............ $126.00
105 12” A m ber............ $ i5.00

xrsi
Pi 1, 9" G reen................................$99.99
Pi 2, 12” G reen........................... $119.99
Pi 3, 12” A m ber.......................... $129.99
Pi 4, 9 ” A m ber.............................$119.99
1400 Color....... _............................$269.99

QUASRAM
Quadchrom e 8400 Color.........$819.00

ZENITH
ZVM122 A m ber.............................$99.99
ZVM123 G reen................................$89.99
ZVM124 IBM-Amber................. $149.00
ZVM131 Color...............................$309.00
ZVM133 RGB................................$429.00
ZVM135 RGB/Composite........... $469.00

west
800-648-3311

I n NV c a l l (7 0 2)5 8 8 -5 6 5 4 , D ep t. 125
O rd e r S t a tu s N u m b e r : 5 8 8 -5 6 5 4

F O.Bojc 6 6 8 9
SfcAbeilrit” N V .

BTo risk . nr> deposit or. COD. orders arc! no w aiting
L arger sh ipm ents m ay requ ire add itiona l charges,
our catalog.

canada
Ontario/Quebec 800-268-3974
Other Provinces800-268-4559

I n T o ro n to c a ll
(41018 2 8 -0 8 6 6 , D ep t. 125

Order Status Number: 62S-0866
2S0S Diinwin Drive, Unit SB

M ississauga, Ontario. Canada I.«L1T1 ■ ■
pertoafor certified checks or money orders. Add 3% (m inim um $5) sh ip p in g and h a n d lin g on a S orders.
N"V and PA residen ts add sales tax. All item s subject to av a ilab ility and price change. Cali today for

east
800-233-8950

I n P A c a l l (7 1 7)3 2 7 -9 5 7 5 , D e p t. 125
O rd e r S t a tu s N u m b e r : 3 2 7 -9 5 7 6

Customer Service Number: 327 1450
477 E. 3rd St., Williamsport, PA 17701

the best
F

A P P L E /F R A N K L IN
D IS K D RIV ES

KICRO-SCI
A 2...$819.00
A 40 .. $299.00
A 70 .. $319.00
CS C ontro ller................................. $79.99
C47 C ontro ller............................... $89.99

FRANKLIN
prices

IBM
E lite 1...$279,00
E lite 2 ... $389.00
E lite 3 ... $869.00

APPLE l i e 8TABTXH PACK
64K Apple lie . Disk D riv e * Controller, ACE 1Qoo Color Com puter..........CALL
80 Column Card. M onitor II & DOS 3.3 AcE PRO PLUS System CALL
COMPLETE..................................... CALL ACE iaoO Office Mgmt. System.CALL

0»U on a ll other A pple M odels ACe PORTABLES.............................CALL

MBC SSO.............................CALL
MBC SSS.............................CALL
MBC BSS-2....................... .CALL

MBC 1100................................ $1499.00
MBC 1150................................ $1899.00
MBC 1200................................ $1849.00
MBC 1250................................ $2099.00
PR 5800 P r in te r$599 00

H P 7 1 B $ 4 1 9 .9 9
4 1 C V $ 1 8 9 .9 9
4 1 C X $ 8 4 9 .9 9

HP 11C.. .$62.99
HP 12C.................................... $92.99
HP 15C......................................$9SK9&
HP 16C..................$ 9 2 .9 9
HP 75D.. $879.99
HPIL M odule.......................... ...$98.99
HPIL Cassette or P rin te r.... $359.99
Card R eader............................. $143.99
Extended Function Module ...$03.99
Time M odule............................$63.99

NEC 6 1P C -1 5 0 0 A$ 1 6 8 .9 9
P C -1 2 8 0 A$ 8 8 .9 9 NEC
CE-125 P rin tetfC assette $128.99 PC'8221A Therm al P r in te r $14 9 "
CE-150 Color P rin te rC asse tte ..$171.99 PG^281A Data R ecorder $uu j »
CE-I55 8K RAM...........................$93.99 PC-8201-06 8K RAM C hips.....$106.00
CS-161 16K RAM.........$134.99 PC-8206A 32K RAM Cai*trldge$329:O0

£s: c o m m o d o re
CBM 8 0 3 2 ...$599
CBM 8096....................................... $869.00
CBM 9000....................................... $999.00
B128-80... $769.00
8032 to 9000 U pgrade..............$499.00
2031 L P Disk Drive.................... $298.00
8050 D isk Drive............ $949.00
8250 Disk D rive...........................$1I9&00
4023 P r in te r $379.00
8023 P r in te r$569.00
6400 P r in te r$1399.00
Z-RAM...$499.00
Silicon Office................................$699.00
The M anager................................. $199.00
SoftROM.. $125.00
v is Calc.....................................

PROFESSIONAL SOFTWARE
Word P ro 2 P lu s ..~
Word Pro 3 P lu s
Word Pro 4 Pius/8 Pluseaeh...$ '279r.00'
InfoPro ...$179.00
A d m in is tra to r $399.00
Power... $79.99

8 X -6 4 P o r ta b le$ 8 5 9
CBM 6 4 .. $199
C1541 Disk. D rive......................... $249.00
C1530 D a tase tte$69.99
C1520 Color Prm teiyPlotter....$129.00
M-801 Dot M atrix P r in te r $219 00
C1526 Dot MatrLx/SenaJ $299 00
017C2 woior M onitor $ 2 5 9 0 0
m i l Joy stick
C1312 Paddles...........................
C1600 VIC Modem.................
C1650 Auto Mdoenn...............
Logo 64
P ilot 64
Word Pro 64 P lu s
Calc R esu lt 64
Cola Result 1 i.»y
Godtewriter 6 4
MCS 801 Color Printer.........
DPS 1101 Daisy P rinter.........
Magic 'Voice Speech Module.
Desk Organizer Lock.............
V idtex Telecom m unications.

MSD
SD1 Disk Drive
SD2 Disk Drive

$4 99
$11 99

... $89 99
..$89.99

....$49.99
...$39.99
....$59.99
...$65.99

.$39 99
$75 99

$499 00
$459 00

$54 99
...$49.99
...$34.95

NSC P RINTERS
NSC 2050..................................... $899.00
NTEC 3550 $1669.00

PERCOM/TANBON
S IS K SR IV E 8

S 'V 320K Floppy.................... $219.00
5 Meg Hard w /C ontroller.....$1049.00
10 Meg Hard w /C ontroller...$1349.00
20 Meg Hard w /C ontroller...$1899.00

VISICORF
VisiCalc IV$159.00
VisiWord +$249.00
Visi-on A pplication. M anager...$79.99
Visi-on Calc..............................$269.00
Visi-on G raph.............................. $179.00
Visi-on W ord.................................$249.99
Optical M ouse.............................. $189.99

AST RESEARCH
Six Pak P lu s from ...$279.00
Combo P lu s I Ifrom. ..$279.00
Mega P lu s from ...$309.00
I/O P lu s;.from .,.$139.00

Q UA9RAM
Q uad link$479.00
Q uadboard................as low as...$289.00
Quad 512 P lu sas low as ...$249.00
Quadcolor...................as low as...$219.00
C hronograph$89.99
Paralle l In terface Board............$89.99
64K RAM Chips K it................... $59.99

MICHOPKO
W ordStar Professional Pack .$389.00
In foS tar....................................... .$299.00
S p e llS tar.................................... $159.00
CalcStar....................................... ..$99.99

MICR08TUF
.$105.00

MXCR080FT
M u ltiP la n $159.00

ASHTONTATE
dBASE I I $339.00
dBASE II I$449.00
F rid ay !.. $185.00

IUS
EasyW riter I I$249.00
E asySpeller............................... $119.00

$229.00
CONTINENTAL SOFTWARE

1st Class l4 a il/P o m L etter.. ...$79.99
Home A coountant P lu s$88.99

LOTTO
Sym phony$549.00
1-2-3.. $339.00

PROFESSIONAL SOFTWARE
PC Plus/The Boss................... .$329.00

SYNAP8E
,„$69.99

data systems
PC COMPATIBLE 16 BIT STSTXMS
Z-150 PC Z-160 PC

Call for price and configurations
SOFTW ARE

C '6 4 A t a r i IB M A p p l e
E l e c t r o n i c - A r t s

O ne o n O ne $•29 9ri $ 2 P 9 9 $ 2 9 99 $ 2 9 99
M u s ic C o n s tr u c t io n $ 2 9 S') $ 2 0 9 9 $ 2 4 99 $ * 9 9 9
P in b a l l C o n s tr u c t io n ' $ 2 9 .8 9 $ 3 9 9 9 $<!9 9.9 $2S> 9 9
G u t & *, b ' *'•>*<* }3Q .99 $? 9 .9 f l v $39,95*
H a rd H a t M ack $ 2 7 99 $2 7 ,9 9 $ 2 7 .9 9 $ 2 7 99

In f o C o m
W itn ess $ 2 9 .9 9 $ 2 9 .9 9 $ 29 99 $ 2 9 99
In f id e l $ 2 9 .9 9 $29 99 $ 2 9 9 9 $ 2 9 99
D e ad lin e $ 2 9 .9 9 $ 2 9 99 $2 9 .9 9 $ 2 9 .9 9
P la n e tfa U i ' j JJ Si.-. 3 ; S m3 jo
B n c l ia n te r $ 2 9 9« $ 2 9 9 9 $2 P <)« $ 2 9 9 9
7 o r it i £ 3 *a . $ a ? -9 9 . $ 2 ? 99 $ 2 7 .9 9 $*J7 9 9
S u sp e n d e d . $ 2 0 99 $ 8 9 94 S2'« 9*i $ 2 9 -9 9
S o rc e re r 1 3 9 9P $ 2 9 $ 2 9 .9 9 $ 3 9 9 9

A t a r i S o f t
J o u s t $3S 99 N A
M oon P a tro l $ 3 5 99 N/A $ 2 6 .9 9 $ 2 8 99
Ms. P acM an $ 3 5 .9 9 N/A $ 2 8 99 $ 2 8 99
P acM an $ 35 99 N/A $2 8 .9 9 $ 2 8 .9 9
D onkey K ong $ 3 5 .9 9 N/A $28 99 $ 2 8 .9 9
Pole P o sitio n $3 5 .9 9 N/A $ 2 8 .9 9 $ 2 8 .9 9

S p l a j i a f e e r - *
A erob ics $ 2 8 9 9 $ 2 6 9 9 $ 2 8 9 9 * 2 8 9 9

$ 2 4 9ft $ 2 4 99 $fe4 9 9 $ 2 4 .9 9
t I | , ■ $ 2 4 99 $ 2 4 9 9 $ 2 4 *) $ 2 4 9 9

Agge&n Voyage $ 2 4 99 $ 2 4 3 9 $ 3 4 9 9 $ 3 4 9 9
S n o o p e r T ro o p s >.2 e & $2 tt flo $ 2 6 9 9 $ 2 9 99 $ 2 0 90
T ra c tio n F ever $ 2 2 99 $2 2 .9 9 $ 2 2 99 $ 2 2 .9 9
A lp h a b e t Zoo $ 2 2 99 $2 2 .9 9 $2 2 .9 9 $ 2 2 .9 9
In S e a rc h of.. $ 2 4 .9 9 $ 2 4 .9 9 $2 4 .9 9 $ 2 4 .9 9
Fa.cemak.er $ 2 2 .9 9 $ 2 2 .9 9 $2 2 .9 9 $ 2 2 .9 9
K in d e r Comp $17 99 $17.99 $17 99 $17 99

erode W ir ie r * 7 9 9 9 $ 7 9 9 9 $1*5 99 $ ib S 99

•1 5 9 90 H 4 9 .S 9 $ lb 9 9 9 $ } 5 9 99
V ts tC a lc -A d v a n ce d .V A N A N/A $ 2 6 9 99

P fs -
W rite N/A N/A $8 9 .9 9 $ • ‘ ■
G raph N/A N/A $ 89 99 $ 7 9 ,9 9
R ep o rt N/A N/A $ 7 9 .9 9 $ 7 9 .9 9
File N/A N/A $ 8 9 .9 9 $ 7 9 .9 9
S o lu tio n s :* as low as N/A N/A $16 99 $16 99

’ C all on T it le s

MasterCardOntario/Quebec 800-268-3974
Other Provinces800-268-4559

I n T o ro n to ca ll
(4 1 6)8 2 8 -0 8 6 6 , D ept. 125

Order S ta tu s N um ber: 8 2 8 -0 8 6 6
2 5 0 5 D u n w in D riv e , U n it 3 B

M ississau g a , O n tario , 'C anada L 5 L IT 1
CAJTADIAU ORDERS: All, p rices’ar« subject, to sh ipp ing , ta x and currency fluctuations. Call for exact pricing In Canada. IWTEBHATIOSAL ORDERS: All
orders placed w ith U.8. offices fo r delivery outside th e C on tinen ta l Unified S ta tes m ust he pre-pald b y eertffted checlt on ly Include 3% (m inim um $51
shipping and handling. EDUCATIONAL DISCOUNTS: Additional d iscounts are available to qualified E ducational In s titu tions . APO & PPO: Add 3% (minimum
$5} sh ipp ing and handling .

w est
800-648-3311

In NV ca ll (7 0 2)5 8 8 -5 6 5 4 ,Dept. 125
Order S ta tu s N um ber: 5 8 8 -5 6 5 4

P .O .Box 6 6 8 9 -
S ta te lta e , N T 8 9 4 4 0 .

east
800-233-8950

In PA ca ll (7 1 7)3 2 7 -9 5 7 5 , Dept. 125
Order S ta tu s N um ber: 3 2 7 -9 5 7 6

Customer Service Number: 387-1450
477 E. 3rd St., Williamsport, PA 17701

This Month in
Micro

This month we have 10 complete, useful, exciting
programs for you on a diverse group of topics. The
longer ones are available on MicroDisk as well to
save you time and effort.

Featured This Month

DVORAK Keyboard — Try out a new keyboard
arrangement that can increase your typing speed
dramatically. The keyboard now commonly used on
computers was deliberately designed to avoid
jamming slow typewriter keyboards. Technology
eliminated the problem, but the awkward solution
is still w ith us. However, a different layout is
becoming more widely accepted, which results in
productivity and typing speed skyrocketing. This
demo program will allow you to convert your
keyboard temporarily and see if you like the
arrangement.

6809 vs. 68000 — While the 68000 based computer
is far more expensive than the 6809, it can be
100 times more powerful, but, what are the real
differences. A checkbook offers a good way to
compare their abilities. This program contains the
main subroutines to create a machine language
program which runs on either kind of machine to
allow comparison.

Flight Simulatot II — Studying an accepted
masterpiece of program design is one way to learn
really fine programming skills. Flight Simulator II
is just such an exciting state-of-the-art package.
Looking into its details and the way it was created
will give even experienced programmers more than
a few pointers.

C-64 Graphics Dump — This "perfect" dump for
the impressive C64 graphics works in either HiRes
or multi-color mode, allows large size printouts,
works with many printers and graphics packages,
can vary color and intensity, and is very fast. This
program is available on a MicroDisk.

Communication Between Computers — What do
you do when you have several different computers
and only one printer? Interface and merge it all
into one efficient system.

HILISTER — Highlighting lines of text and
programs can be very useful for emphasis or clarity
when discussing material on the screen in business
meetings, classrooms, seminars. This program also
allows easy movement within a program or text.

Simple Numeric Sorting — This simple method
lets long lists be arranged in order, without user
supplied programs. It takes advantage of a built-in
BASIC feature.

/ Applesoft Compression Program — With other
programs, extra long listings often do not work,
overflowing the Called Line Number Table. This
program has several unusual features which surpass

V other Compression routines.

U seful M ath Functions — Save tim e and
mathematical aggrevation with a compilation of
defined functions.

Commodore to Apple — Sort of a poor man's
modem. Commodore cassette files can be sent to
Apple disks for storage or interfacing with
peripherals which don't work with Commodore.
This works with data files, BASIC programs and
memory ranges.

Circles for the C64 — In a HiRes environment,
creating circles can be a problem. The code for this
mathematical way of defining and plotting circles in
a game or business type analysis is most helpful.
The theory will generally work on any 6502 based
computer with HiRes capabilities.

BASIC Hex Loader — This handy BASIC Utility
will load Machine Language code in Hex, and a
special version for the C64 will even generate the
DATA statements.

2 MICRO No. 73 - July 1984

-r*

Publlsher/Editor-ln-Chlef
Robert M. Tripp

Associate Publisher
CindyKocher

Production Manager
Jennifer Collins

Technical Editor
Mark S. Morano

Technical Editor
Mike Rowe

Advertising Manager
William G. York

Dealer Sales Manager
Linda Hensdill

Circulation Manager
Linda Hensdill

Office Manager
Pauline Giard

Shipping Director
Marie Ann LeCiair

Comptroller
Donna M. Tripp

Accounting
Louise Ryan

Contributing Editors
Cornell's Bongers

Phil Daley
David Malmberg

John Steiner
Jim Strasma

Paul Swanson
Richard C. Vile, Jr.

Loren Wright

MICRO is published monthly by:
MICRO, Chelmsford, MA 01824.
Second Class postage paid at:

Chelmsford, MA 01824 and additional;
mailing offices.
USPS Publication Number: 483470.
ISSN: 0271-9002.
Send subscriptions, change of address,
USPS Form 3579, requests for back issues
and all othe fulfillment questions to:

MICRO
P.O.Box 6502
Chelmsford, MA 01824

or caU 617/256-3649.
Subscription Rates: (per year):
U.S. $24.00 or $42.00 for two years
Foreign surface mail: $27.00
Air mall: Europe $42.00
Mexico, Central America, Middle East,
North Africa, Central Africa $48.00
South America, South Africa, Far East,
Australia, New Zealand $72.00

Copyright © 1984 by MICRO.
All Rights Reserved:

/ A i c a o

fo r the Serious Computerist

JULY I
13A Basic DVORAK

Keyboard for the
VIC-20 and C-64

Alfred J. Bruey

A “ new” key arrangement
is gaining acceptance,
increasing typing speed
and productivity
enormously.

15A Comparison of 6809
and 68000
Mike Rosing

The checkbook offers a
simple, effective way to
compare these two
microprocessors.

19 Flight Simulator II:
Microcomputer
Simulation At Its Best
Chris Williams

By analyzing this design
masterpiece, programmers
may discover the elements
needed to make their own
software great.

22 Graphic Print for C-64
Michael J. Keryan

Create a full-page graphic
printout from a
Commodore 64 high
resolution display.

30 Interface Clinic:
Communication
Between Different
Computers
Ralph Tenny

Merge several computers
into one efficient system,
sharing a single printer.

34 HILISTER — A Study
and Teaching Aid
J. Morris Prosser

Move easily within your
programs and highlight
parts of text or listings for
emphasis, drama, clarity.

38 Super Simple Numeric
Sort
Robert L Martin

Arrange a list in numerical
order without the need for
a user supplied sorting
program.

4 MICRO No. 73 ■ July 1984

MO. 73
42 CMPRSS: Improved

Applesoft
Compression Program

Compress large programs
and retain comments
without overflowing Called
Line Number Table.

Ian R. Humphreys

52 Useful
Functions — Part II
Paul Garrison

Save time and
mathematical aggrevation
with a compilation of
defined functions.

$5 Commodore-To-Apple
Cassette File Loader
Art Matheny

Transfer cassette files
written on VIC-20 or C64 to
an Apple disk for
interfacing, etc.

65 BASIC Hex Loader

Robert M. Tripp

Handy BASIC utility to
load Machine Language
code in Hex.

66 Circles for the
Commodore 64
Lester Cain

An interesting
mathematical way to plot
circles on the C64.

Product Reviews

11 Paint Magic Easy to use
graphics with
joystick and
keyboard.

11 Promenade
Model C1 EPROM
Programmer

Add-on programmer
which handles 12
models of EPROM
and at least 8 of
EEPROM.

11 TimeTrax Time management
system for personal
or business life,
including printed
schedules.

12 Spell Perfect Machine language
spelling checker for
Letter Perfect or any
standard text files.

12 The Complete
Graphics System

2 and 3 dimensional
graphics including
108 colors.

Departments
2 Highlights
6 Editorial
7 Feedback
8 Spotlight: Sage

10 Lyte Bytes
11 Reviews
72 CoCo Bits
73 Microbes

74 Catalog
78 Books
79 Listing Conventions
80 Advertiser Index
80 Next Month in Micro

No. 73 - July 1984 MICRO 5

zcUCv u a C

Dear Readers,

As we approach the midpoint of 1984, I find myself
looking towards the future. In the field of computers so
much happens so quickly that it is hard to imagine what
will transpire in the remainder of this year, let alone five
years hence. One way to approach the future is by
examining the present, noting the trends and then
projecting. At this time the world of the microcomputer
continues to dish up new surprises. It seems every time
you turn around a new computer is being launched.
Although the appearance may differ from machine to
machine they are all based on a few standard chips. At its
inception, MICRO chose to focus on the 6502 chip. This
chip has proven itself to be a well designed and dependable
innovation. Although the heyday of the 6502 has passed, it
is not dead. This is clearly evidenced by Apple releasing
yet another 6502-based computer - the Apple lie. Apple
seems to also be aware of the need to move onward and did
so with the introduction of the Macintosh. The 68000
brings the general populace in touch with 16-bit machines.
(I will not go into the advantages of a 16-bit over an 8-bit
because, if there weren’t any, the 68000 would never have
surfaced.) Presently the big name in chips seems to be
Intel, not Motorola. The 8088, 8086 and other chips
developed by Intel have become the backbones of micros
made by IBM, Hewlett-Packard, and Digital, to name a
few. These are not names to scoff at. As popular as 6502
based machines (Apple, Atari, Commodore, etc.) are, the
bulk of sales is starting to shift to machines based on other
chips. Unfortunately or fortunately, depending on your
viewpoint, there are rumors that Intel is only going to be
able to fill 25 percent of its orders. If this proves to be true
then someone will have to pick up the slack. The question
is who. Perhaps Motorola will seize the opportunity and
cover the deficit, using their chips.

But, even if Intel completely dominates the market,
the 6502 will carry on. People don't throw away
computers because they become outdated. The fact that
there are still many IBM mainframes using cards is a
testimony to this. Why do people continue to use outdated
computers? Certainly the monetary aspect can't be
overlooked. Even with drastic reductions in the price of
memory (the new HP Nomad has as many words of
memory as the old IBM 360 series), and the lowering of the
price of computers in general, they are still not cheap. For
many it is a matter of loyalty. Others are content with the
familiar and prefer the comfort of an old friend to the fear
of the unknown. And there are those people who prefer to
live in the past, not be bothered and are perfectly content,
thank you very much. For these and other reasons there
will be a need for 6502 machines, journals, software and
support for many years to come.

But what about the future? Certainly one cannot ignore
the 68000 or Intel's 80186. To pretend they aren't
improvements on previous chips is folly. Rather than seek
to delude ourselves I suggest we embrace new technology

with open arms and open eyes. To blindly accept
something simply because it has been billed as new and
improved is foolish. I think the best approach is one of
open skepticism. A willingness to explore new territory
and seek new frontiers. After all, isn 't that what the world
of computers has always been about? Let's examine the
innovations and carefully separate the wheat from the
chaff. Bearing in mind past mistakes, we will always find
room to improve and go forward. We have built better
mousetraps; we have even built better "mouses"; why not
now create men? Because, of mice and men, there is no
end.

Mark S. Morano
Technical Editor

On The
Cover

On th e bridge at Concord, M assachusetts, a colonial
m in u tem an dream s of past and fu tu re glories of
fam ily and country . D ata Bases, long though t of as
tools for business and governm ent, have m any
useful applications in personal life as w ell. Keeping
fam ily trees, h ea lth inform ation, em ploym ent
records are just a few uses w hich can m ake you
paper-independent. Happy Independence Day!

Robert Cook, farmer - Cynthia Cabo

1741-1817 1753-1819

and throughout Rev. War

George Cook, merchant - Grace Adams
1773- 1_ Qao ± 703-1 O.A
Mnuorj +0 Virgin;a and fought

Mar* n f 1 D 1 ? I . . i+ k T srnn...........“y ,

Robert Cook, mountain man - Little Moon

1818-1576 ?? -1873
r-. I A i,-, rCi. CW.M ,• 1 • w.y

. =>+ 1 i + t i a D i,- u,-..-.-.

William Cook, lawyer - Bonnie Lee
1 Q P Q _-1 P C 'S 1 CT21 - 1 O Q /I

6 MICRO No. 73 - July 1984

Dear Ian,

(RE: Micro 67, Dec. 1983)

I have a question about your program
'C-64 Alarm C lock1. For some
unknown reason, when I use 'GOSUB
9140' to reset the alarm, the computer
displays 'SYNTAX ERROR EM 48'. It
does not affect the operation of the
clock, but I would like to know why
this statement appears, since there is
no statement 48 in this program. I have
tried to list statement 48, however,
nothing lists. Please reply as soon as
possible. Thank you.

Kenneth K. Choy
San F ran c isc o , CA

Dear Kenneth,

it into the keyboard directly, then
BASIC will execute the subroutine ok.
When it is finished, however, it will try
to resume executing the piogiam at the
next statement after the GOSUB. Since
there is no program running, it gets
confused and gives an error message.

The en or seems to be quite
harmless, and does not affect anything.
If you use the ‘gosub 9140’ statement
within a program, you should not incur
an error.

There is no line 48, o f course, and
that number is meaningless.

I hope you enjoy the alarm clock
program, Kenneth, and that this odd
error doesn 't cause any problems.

Ian Adam
Vancouver, BC, Canada

The situation you describe, getting a
‘syntax error’ after ‘gosub 9140’, seems
to occur only occasionally. The
sim plest explanation is that the
GOSUB command is intended to be
used from within a program. If you type

To the editor,

Ref. Micro N o.51 August 1982,
page 97.

First things first. I truly enjoy your
magazine. Similarly for Mr. Bongers
articles.

In Mr. C. Bongers program on an
improved method of garbage collection,
MICRO No. 51 page 90, the program
works as advertised. However, I found
a slight problem when I attempted to
use it with string arrays. The second
paragraph on page 97 appears to be too
brief. I tried using the string version of:
&CLEAR A:DIM A(20,20)
to initialize a string array to zero. This
version:
&CLEAR A$:DIM A$(20,20j
didn't do anything until it was
modified to force a cleanup as follows:
&CLEAR A$:FRE (1,K) : DIM
A$(20,20J
From then on I was smiling.

James Fulton
Corona Del Mar, CA

JMCftO

One Month
Added to All

Subscriptions

of our combined April/May issue, we've
gotten some questions from readers wanting to know
if we were going to be bimonthly, if they were going to
loose an issue, if we were taking a vacation early, etc.

The answer is much simpler. When we redesigned
MICRO to make it more readable,we needed some
extra time between issues to gear up our production
department (artistic temperament and all that). So we
gained the needed time by combining two issues.

It was a one-time thing. We are not going to be
bimonthly. More importantly, you will not lose an
issue. If you subscribed for 12 issues, you will receive
just that — and the combined issue counts as only
one. All subscriptions will be extended one month.

While we’re on the subject of subscriptions, please
check your mailing labels to be sure all information is
correct; tell us about problems right away.

At last! . . .A dual 6522 versatile
interface adapter (VIA) board

for the Commodore-64.
The 6522 VIA, long the preferred

input/output chip for 6502 m i
crocomputers, is now available for the
C-64. 6522 programming techniques,
covered in many available books, can now
be applied to the C-64 for even the most
sophisticated real-time control applica
tions. Board allows full use of the IRQ
interrupt. When combined with the
C-64’s memory capacity, it provides an
extremely powerful yet cost-effective de
velopment system and controller in one
package. Includes extensive application
notes and programming examples.

Up to four boards can be connected to
gether, providing sixteen 8-bit ports.
Order Model 64IF22, $169 for one, post
paid USA. Each additional $149.
Complete reconstructed Assembly Lan
guage source code for the C-64*s BASIC and

KERNAL ROMs, all 16 K!
Extensively com m ented and cross-

referenced. Far more than a mere “ memory
map” of useful locations, this book really does
tell all. An incredible time-saver in effective
C-64 programming and understanding. Order
C-64 Source $29.95, postpaid USA.

SCHNEDLER SYSTEMS
1501 N. Ivanhoe, Dept. M7

Arlington, VA 22205
Telephone orders/information: (703) 237-4796
VISA MASTERCARD

No. 73 - July 1984 MICRO

Sage
Microcomputer

System
Distributor

Sage Computer
4905 Energy Way
Reno, NV 89502

Introduction

The SAGE II is a fast 32-bit computer using the p-System
Operating System with a 68000 Interpreter to emulate the
'p-machine.' SAGE chose this operating system for a
number of reasons. To develop their own Operating
System would have been time consuming and costly, and
once it was finished they would be incompatible with
everyone else. Instead they opted for a highly portable
system which would allow programs to be transferred
from one machine to another with very little difficulty.
Portability being the key, many programmers purchased
SAGEs to use as developmental tools. The SAGE also had
the added attraction of being very fast. With these points
in mind, the majority of the SAGEs sold during the first
year were bought by programmers and developers. Since
that time the market and support of the SAGE has greatly
expanded.

The Processor

The SAGE II uses an 8mhz, interrupt driven 68000
microprocessor. It has a 16-bit data bus and a 24-bit
address bus, directly addressing 16 million bytes. There
are more than 1000 executable instructions, the set
containing 56 instruction types with 14 different
addressing modes. With 17 general purpose registers, each
32 bits long, a 24-bit program counter and a 16-bit status
register, the SAGE is a powerful machine. Using an 8 Mhz
clock the MC68000 (without wait states) runs at 2 million
instructions per second. There is a light on the processor
which indicates when the bus is active, inactive or the
processor is in process.

Memory

RAM memory for the SAGE II is configurable from 128K to
1024K bytes in 128K increments. On the Main processor
board [CPU board) up to 512K bytes may be stored, with
an additional 512K on the Winchester board. A self-test,
DEBUGGER, and bootstraps are in the EPROM firmware.

Keyboard and Physical Description

Basically a standard Qwerty keyboard, the entire unit is
connected with a telephone-like cord allowing the user to

move the keyboard to his lap or any convenient position.
The basic alphanumeric keys are laid out in the usual
manner with a numeric pad to the right. Above this pad are
four programmable function keys (their function changing
from program to program). The SAGE II is contained in an
aluminum case measuring 3.5" x 12.5” x 17” . Weighing
in at 151b. 8 oz., it is easily moved.

Interfaces

SAGE decided to simplify I/O implementation by using
I/O memory-mapped assignment. The connections
provided are: Terminal - RS232-C, Modem - RS232-C,
Printer - parallel, Group-A and B - dipswitch, and IEEE-
488 -GPIB bus. A second RS232-C port is available. With
the Winchester board 4 serial ports can be supported.

Documentation

The documentation we received included a Getting
Started/Word Processing volume, a Technical Manual,
and a p-System Operating System Manual. Each manual

8 MICRO No. 73 • July 1984

was contained in a 3-ring hard-cover binder which fit into
another hard-covered box. The documentation was clearly
written, with indexes and table of contents that were very
helpful. Most of the information was easily accessed and
references were provided where appropriate.

Software

There are some fine software packages available for the
SAGE II. These include some excellent business,spread
sheet and database products. As the SAGE II uses the
p-System Operating System, it lends itself to easy
transferral of software developed on other p-System
machines. Given this portability of programs, I would
expect a steady influx of software for this microcomputer.

Peripherals

The SAGE II supports single and dual disk drives,
Winchester disk, dot matrix and daisy-wheel printers,
monochrome and color monitors. The system came with a
QUME monitor which is ergonomically designed (i.e.,
takes people into consideration). This was a very nice
addition, being able to rotate and swivel the screen to
avoid glare, and position the monitor to suit the user's
preferences and body (tall, short, etc.).

Price

The SAGE II with one 640K floppy drive is listed at $3,200,
with two 640K floppy drives it is listed at $3,900. If you
choose to expand to 512K bytes of parity RAM (which is
necessary for either the Sage Multi-User system or the
Idris Operating System), it is an additional $500. The
Qume CRT comes in a variety of flavors, prices ranging
from $690 for the green QVT-102 to $1,310 for the amber
QVT-211GX which has full graphics capabilities.

Conclusion

The SAGE II is a well designed and competent computer.
SAGE is the only low-cost multi-user (2 users) and m ulti
tasking micro on the market. Allowing foreground and
background activites to run concurrently, you can compile
while using the word processor. Although this not the
micro for everyone it is definitely one of the best 68000
micros currently available. For those who are interested in
a more serious micro, particularly for developmental or
business purposes this is definitely a machine worth
considering.

JMCftO

OS9
APPLICATION

SOFTWARE
ACCOUNTS

PAYABLE

$299
ACCOUNTS

GENERAL
LEDGER

with
CASH

JOURNAL

PAYROLL

$499
SMALL

BUSINESS
RECEIVABLE x q q q INVENTORY

$299 $299
COMPLETE DOCUMENTATION $19.95

OS9 & BASIC 09 ARE TRADEMARK OF
MICROWARE, INC. & MOTOROLA CORP.

SPECIALTY
ELECTRONICS

(405) 233-5564
2110 W. WILLOW - ENID, OK 73701

ISOBAR...
most complete ^ • >
computer protection!

More features to prevent errors, false printout, disc
skips! Only ISOBAR has 3-way spike protection, noise
suppression for RFI PLUS isolated filter banks! In
dividual filter banks isolate each load from other loads
minimizing data errors of any kind. MOV surge sup
pressors arrest both common mode and differential
mode surges. L/C filter network rejects radio fre
quency noise at any amplitude. Torroidal coils for
greatest efficiency! All-metal housing.
Order toll free 1-800-662-5021,K ,iyMOIS CAU

j Indus-Tool, 325 W. Huron, Dept. M
| Chicago, IL 60610
I Send model #_______
Enclosed is $

1-312-642-6871

T Model IBAR 4-6
____ ■ (4 outlets,
■ ■ J 6 ft. cord)
^ - 1 Only $79.95

I
• □ MasterCard or □ Visa
! Card no__________________
j Name___

| Signature _

j Address_

I C ity--------

- or charge on . Mode| |BAR 2.6
Expires--------------j (2 outlets,

_______________ J 6 ft. cord)
____ _______I Only $54.95

. State _

j Model IBAR 8-15
j (8 outlets,
1 15 ft. cord)

Only $97.95

No. 73 - July 1984 MICRO 9

Why Winchester failed his
computer course?

NCEMMUOIN

LXEPI

VICRSEURE

RPHEOP

EDPCOUESOD

GRMIOTLAH

CIKDOLRG

CAUPDETIL

ITUNENOMLITOEMCAC

RIBYAN

ILECDHAMXIE

CBYISOML

Q□
o n

D 0
0

ID Q
0 JO I
o o

□
ID D

□ ~U
o n

o

Last month we printed a puzzle,
(see copy). The secret is now revealed
-read the slashes and circles as ones and
zeros, divide them into groups of
seven, translate each group into its
ASCII equivalent, then read the letters
in reverse order; you get the following
message -‘‘welcome to lyte bytes.”

This month to text your computer
literacy we have a word scramble. To

find the answer — first decipher each
word and write it in the adjacent box;
extract the letters that fall within the
circ les; take these le tte rs and
unscramble them to arrive at the final
answer using the blank lines under the
cartoon. We will of course provide the
answer in next month's Lyte Bytes.

10 MICRO No. 73 - July 1984

xe vi& cvJ-

Product Name: Paint Magic
Equip. Req'd: Commodore 64 with disk drive,

joystick and color monitor
Price: $50
Manufacturer: Datamost, Inc.

8943 Fullbright Avenue
Chatsworth, CA 91311

Description: A graphics program that creates pictures
with the help of a joystick and the keyboard. You advance
from circles and boxes with one color fills, to sketches
with self-designed color patterns which can be transposed,
exchanged and saved for later recall. Portions of the screen
can be magnified for detailed work. Sample pictures are
provided to show you what Paint Magic is capable of.

Pluses: Any screens you design can be saved and included
in your own BASIC programs. Because of the numerous
color and pattern choices you have amazing flexibility to
experiment with.

Minuses: Only five colors can be used at a time. A
joystick with eight positions is essential and being able to
select diagonal lockout is a very useful feature.

D ocum entation: An attractive
provides the needed information

Skill level: Beginner and up

Reviewer: Mike Cherry

and simple tutorial

month that becomes 12 months old. Maximum of 311
entries per month or 9079 characters of text. Maximum of
99 entries per day. Good error messages. A clock is
included (hardware and assembly instructions). This
maintains the correct time and date, using two AA
batteries as a backup. The clock itself makes this package
worth the price. The clock can also be used in Applesoft
BASIC or 6502 assembly language programs, a machine
language program is included on the disk. Clear readable
graphic display of calendar (month at a time).

Minuses: Time-Trax has a feature which reminds you of
upcoming appointments and tells you when you have
missed a scheduled event. A great idea, but one that is
limited by the necessities of 1) your computer must be on,
2) it must be running Time-Trax, and 3) a menu or
calendar must be displayed. If you haven't met these
requirements your reminder becomes a missed event. Not
very practical in practice, since most people will not
choose to keep their computer always running and tie up
their system with one program, i.e., Time-Trax. Rather, I
suggest they should have made this a background instead
of a foreground task.

Documentation: Thorough, easy to understand. Unlike
much documentation, an index has been provided.

Skill level: Beginner and up.

Reviewer: Mark S. Morano

Product Name: Time-Trax
Equip. Req'd: Apple II, II or He, monitor (preferably

Black and White), disk drive, blank
diskette, 2 AA alakaline batteries

Price: $99.95
Manufacturer: Creative Peripherals Unlimited, Inc.

1606 S. Clementine
Anaheim, CA 92802

Description: An easy to use time management system,
designed to help you keep track of events, scheduled
meetings, etc., in your personal or business environment.
One package can manage an infinite number of users. The
program keeps a calendar of scheduled events for one year,
and enables the user to print out a daily, weekly, or
monthly schedule. It has a search of entries option, using
keyword(s) and wildcards.

Pluses: Very simple to use, clean, clear and helpful
menus. Hitting an escape (at most three times) will return
you from anywhere in program to the main menu. Will not
allow you to make an entry into the past. Has two kinds of
cursors: blinking — displayed when you are to type
information in; and non-blinking — displayed when you
are to select an option. Retains data for the present month,
and eleven months past and in the future, deleting any

Product Name: Promenade model C l EPROM
Programmer

Equip. Req’d: Commodore 64 or VIC-20 Computer,
Disk or Tape

Price: $99.50 plus $3 postage/handling
Manufacturer: JASON-RANHEIM

580 Parrott Street
San Jose, CA 95112

Description: The Promenade is a highly capable EPROM
programmer which operates from the User Port of the VIC
or C-64 computers. It can program at least 12 models of
5-volt only EPROM (Erasable Programmable Read Only
Memory) ranging in size from IK x 8 to 32K x 8 and 8
models of EEPROM (Electrically Erasable PROM). In
addition to programming EPROMs and EEPROMs (and
erasing EEPROMs) the unit will save assembly language
object code (as will any programmer) and also will put
BASIC object code into ROM. An auto-staxt loader is
furnished which can make any ROM auto-start when
plugged into the computer's expansion port. Promenade's
own software will put several BASIC programs on an
EPROM, along with a directory of those programs. Thus,
working programs can be 1 'cast in silicon'' on EPROM and
simply plugged in to change job assignments for a
computer. This feature is being widely used in industry
where the low cost of a VIC-20 makes it attractive to

No. 73 ■ July 1984 MICRO 11

dedicate a computer. The ease of BASIC programming and
subsequent installation of the program in EPROM, allows
major cost savings for computerized projects. Rapid
turnaround of modified programs is possible with
EEPROMs: the time for erasure and reprogramming an
EEPROM can be as short as 2 minutes or less!

Pluses: This package outperforms most other add-on
programmers, yet the cost is lower than any I've heard of.
If you have the computer, all you need is mass storage, a
Promenade and EPROMs to start generating programs
which don't go away if the power fails. It is rugged,
attractive, highly engineered and well made. Their
immediate concern is to get the customer's problems
solved as promptly as possible, even if this requires
express mail delivery of a replacement unit.

to prompt you with similar sounding words from the
dictionary or you can edit the word in place.

Minuses: The program doesn't recognize “ ' ” or " - ”
leading to problems with hyphenated or contracted words.
A prompt to add word to dictionary instead of rerunning
the program on the corrected file would be nice.

D o c u m e n ta tio n : T he 72 page m an u a l n ice ly
complements the on-line prompting and answers all
questions with specific examples.

Skill level: No particular computer knowledge necessary.

Reviewer: Phil Daley

Minuses: The major lack of this equipment is in
documentation for programming EPROMs with assembly
object code, and on how to manipulate assembly files with
a debug monitor co-resident with the Promenade software.
Everything works well together - it is just hard to learn
how from the documentation. It is my personal prejudice
that electrical schematics should be furnished with all
electronic products, but the low cost of Promenade
overcomes this feeling somewhat.

Documentation: A 16 page manual (but no schematic) is
furnished. It covers saving BASIC programs to EPROM in
meticulous detail. The manual is not well organized, but
it is small enough that everything can be found rather
easily. Documentation regarding use of Promenade for
“normal'' assembly-language programming is very sparse.

Skill level: In general, using EPROM programmers
requires considerable knowledge about preparing assembly
code for use in a read-only environment. However, this
combination of equipment and documentation should
allow inexperienced persons to save BASIC programs
readily.

Reviewer: Ralph Tenny __

/

Product Name: Spell Perfect
Equip. Req'd: Apple II w/48K and drive
Price: $89.95
Manufacturer: LJK Enterprises, Inc.

7852 Big Bend Blvd.
St. Louis, MO 63119

D escription: A machine-language spelling checker
\ program operating on Letter Perfect or any standard text
\files. It is compatible with most 80 column cards and has a
file buffer of over 40,000 characters. Words are easily
added to the dictionary from corrected documents and up
to 255 dictionary disks are allowed - the program prompts
for disk insertions.

Pluses: The well written manual is not needed for the
most part being menu driven and having easily understood
prompts. The program is fast (a 100 sector file took less
than 2 minutes] and offers words to be corrected in context
with the surrounding text. A "help '' command is available

Product Name: The Complete Graphics System
Equip. Req'd: Apple II, II, He, Color Monitor, disk

drive, extra diskettes for backup copies
and work disks

Price: *
Manufacturer: Penguin Software

830 4th Avenue
P.O. Box 311
Geneva, IL 60134

Description: As the title says, this is a complete graphics
system. Easy enough for those who aren't programmers
and sophisticated enough for those who are. You can
create two and three dimensional graphics, use 108
blended colors, outline areas, fill them in, draw with lines,
brushes (96 choices), use freehand drawing, employ
preprogrammed boxes, arcs, circles, triangles, and ellipses.
There is a program in which you can create your own
shapes, store them in a table, and then draw on them
whenever you choose. A variety of input devices are
compatible: ordinary keyboard, joystick, trackball, touch
tablet, paddles, Apple graphics tablet, a mouse, and
Houston Instruments HiPad. (What's left?) An object can
be magnified 2, 4, or 8 times its original size, rotated,
shrunk, varied in intensity, and easily transferred to any
drawing. Text can be added to graphics using another
special program. As originally stated — this is a
complete graphics system.

Pluses: The pluses are many. The fact that it can do all of
the above is a plus; that it does them well merits special
applause.

Minuses: Overall, there is no such thing as a perfect
graphics package. There will always be flaws. As far as
minuses go with this product they are truly insignificant,
bordering on non-existent.

Documentation: The documentation is generally clearly
written. There are some sections that could be more lucid,
but with some rereading most everything can be figured
out.

Skill level: Intermediate to advanced.

Reviewer: Mark S. Morano
JMCftO

12 MICRO No. 73 - July 1984

A Basic DVORAK Keyboard
for the

VIC-20 and Commodore 64
-

5 3 1 9 0 2 4 6

• I -
- £

CUR

HOME

INST

DEL

CTRL 7) P Y F G C R L e * t RESTORE

RUN

STOP

SHIFT

LOCK
A 0 E U I D H T N = BETURN

K 1 SHIFT I ; Q J K X B M W V z CHIFT t
J

by A lfred J. Bruey

i i i i i i m m i i i i i i i w

The current keyboard was designed to slow typists
down. A new arrangement can increase productivity
enormously
IIIIIIIIIIIIIIIIIIII1IIIIIIIIIII1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIN...... Illl

At the 1876 Centennial Exposition one
exhibitor presented a strange gadget
w h ich is now know n as the
"typewriter.” It did not receive as
much attention as it should have
because this new, practical discovery
was overshadowed by the "telephone,”
another strange new invention.

One of the firs t ty p ew rite r
designers, Christopher Sholes, found
that if the keys were arranged in a
reasonable order, they would jam
because of their slow action. So he
rearranged them so the keys that were
often hit together would not get tangled
with each other. His arrangement,
w h ich assig n s th e le t te r s
QWERTYUIOP to the top row of
alphabetic keys, is still used today. I
will refer to this arrangement as the
QWERTY keyboard, for obvious
reasons. If there is a QWERTY
keyboard, there must, of course, be a
non-QWERTY keyboard. Otherwise,
what would I be writing about?

Actually, there are, or have been,
many non-QWERTY keyboards. The

one that I'll be discussing here, the
Dvorak keyboard, was designed by
August Dvorak in the 1930's. Dvorak
wasn't the first to develop a non-
QWERTY keyboard; in the last quarter
of the nineteenth and first quarter of
the twentieth century, there were a
great variety of typewriter keyboard
arrangements from which to choose.
When I was collecting old typewriters a
few years ago, before a lack of storage
space put an end to that hobby, I found
that probably the easiest-to-find non-
QWERTY keyboard was found on the
old Oliver typewriter whose model
numbers went all the way to Number 9
before they were discontinued.

The DVORAK Keyboard

Figure 1 shows a drawing of the VIC-20
and C-64 keyboard with the commonly
used keys changed to represent a
simplified version of the Dvorak
keyboard. Notice that no attempt was
made to incorporate all the special
characters. The arrangement in this

figure follows that shown in an article
(Dvorak Keyboard for Your Computer)
by John Raines in the August, 1983
issue of MICRO Magazine. This article
presented a 6502 machine language
program for the Apple Computer,
which allows the Dvorak arrangement
to be used to input data to Apple
programs.

The VIC DVORAK Program
The Dvorak keyboard program shown
in Listing 1 is a demonstration program
that you can run to see whether or not
you like this "new” arrangement. All
it does is put whatever you type on the
screen.

The program logic is straight
forward. A GET instruction is used to
get characters, one at a time, from the
keyboard buffer. Then the ASCII value
of the character is obtained. A con
version table, entered with a DATA and
READ statement, is used to convert the
QWERTY characters to the equivalent
Dvorak keyboard positions. Then the
character is printed on the screen (in

No. 73 ■ July 1984 MICRO 13

Listing 1
Program Extensions

© 10 DIM MT(47)
50 DATA 8 7 ,0 0 ,8 6 ,9 0 ,5 6 ,5 5 ,5 3 ,5 1 ,4 9 ,5 7 ,4 8 ,5 0 ,5 2 ,5 4 ,8 3 ,0 0
55 DATA 0 0 ,0 0 ,0 0 ,0 0 ,0 0 ,6 5 ,8 8 ,7 4 ,6 9 ,4 6 ,8 5 ,7 3 ,6 8 ,6 7 ,7 2 ,8 4
60 DATA 7 8 ,7 7 ,6 6 ,8 2 ,7 6 ,6 3 ,8 0 ,7 9 ,8 9 ,7 1 ,7 5 ,4 4 ,8 1 ,7 0 ,5 9

m 65 FOR 1=1 TO 4 7 :READ MT(I):NEXT I
100 GET K$: IF K$=""THEN 100
101 K=ASC(K$)

© 102 IF K=60 THEN K=44:UC=1:G0T0 115
103 IF K=62 THEN K=46:UC=1:G0T0 115
104 IF K=63 THEN K=47:UC=1:G0T0 115
105 IF K=91 THEN K=58:UC=1:GOTO 115

© 109 UC=0:IF K< > 100 THEN UC=1:K=K-128
110 IF K$=CHR$(13) THEN PRINT CHR$(13); :G0T0 100
111 IF K$=CHR$(32) THEN PRINT CHR$(32); :G0T0 100

^ 115 PRINT CHR$(MT(K-43)+128*UC);
^ 120 GOTO 100

o

lines 110, 111, or 115). Then execution
is returned to line 100 to GET the next
character.

Using the Program

F irs t p ress th e SHIFT and
COMMODORE keys to put the VIC
into text mode. Next load the program
(QWERTY LOAD translates to Dvorak
NRAE) and the RUN it |RUN becomes
PGBJ. Then you begin typing as though
you had a Dvorak keyboard. When you
are done using the program, press the
RUN/STOP key to get out of the
program and revert to the QWERTY
keyboard.

Notice that only the characters
outlined in the heavy black lines in
Figure 1 are defined. You can use other
characters, but you will probably get
the message
?ILLEGAL QUANTITY ERROR IN 115
if you do.

Changing Your Keyboard

There are various ways to change your
keyboard:
1. The easiest way is to put squares of
masking tape on the keytops and write
on the proper leters with a felt-tip pen.
You might write the QWERTY symbols
in one comer of the tape and the
DVORAK in another.
2. You can change keycaps. This is not
a trivial task and you should consider it
only if you are making a permanent
change.

3. Another temporary solution is to
put the Dvorak character on tape on the
front of the keycap, the way APL
characters are often imprinted on keys.
These characters can also be painted on
the keyfronts for a permanent change.

G e ttin g New K eyboard
Arrangements Adopted

The major problem in trying to get a
new keyboard arrangement adopted is
that there are millions of people trained
on the QWERTY keyboard. Another
problem is that there are millions of
QWERTY Keyboards in use. Tests
performed since the 1940's have shown
convincingly that it does not take long
for the increased productivity possible
with the Dvorak keyboard to recover
the investment in re-training QWERTY
typists on Dvorak keyboards. But
many companies don't have the money
to hire replacement help to keep up
with the day-to-day work as their
typists are being retrained. They also
do not have the money to replace all
their QWERTY hardware.

A simple solution to the hardware
problem is in sight. The availability of
c o m p u te rs w ith p ro g ram m ab le
keyboards makes it possible for users
trained on two different keyboards to
use the same computer (at different
times, of course) by plugging in
differently defined keyboards. By using
this method, companies can gradually
switch their employees to the Dvorak
layout. A Dvorak keyboard is already
available as an option for the IBM PC.

As this program now stands, it is only
useful as a demonstration of the
Dvorak keyboard. You can't use this
program to input data into a different
program without some programming
effort.
1. You can change this program to an
input subroutine which you can attach
to a more useful program. Then you
can use the subroutine to enter data for
the main program.
2. If you are going to use the Dvorak
keyboard for your permanent keyboard
arrangement, you will probably want to
re-write this technique in machine
language and use this program as a
replacement for your computer's input
routine. You can get help doing this
from the MICRO article referenced
earlier.
3. You might want to extend this
system to handle the characters that I
didn't include in my program.
4. You can add coding to print the
characters on the printer as well as the
screen, so you can have a record of your
typing progress if you are using this
program to learn the new keyboard.

JMCftO

Sure
it's insured?

SAFEWARE™ Insurance provides full
replacement of hardware, media and

purchased software. As little as $35/yr covers:
• Fire • Theft • Power Surges

• Earthquake • Water Damage • Auto Accident
For information or immediate coverage call:

1-800-848-3469
In Ohio call (614) 262-0559

SAFEWARE, THE INSURANCE AGENCY INC.

14 MICRO No. 73 ■ July 1984

f e a f a n e

A Comparison:

by Mike Rosing

EE 3Q E 3HE 3 EE E10E SEE 30E 30E

The checkbook offers a simple but effective way to
compare these two microprocessors

HE □EE □ HE □ BE □BE 30E SHE □ BE

The 6809 microprocessor is found in
several computers, including the Radio
Shack color com puter which is
available just about anywhere. The
68000 microprocessor is also found in
several computers. Some of these are
APPLE'S LISA and MACINTOSH
computers and the SAGE 13. While the
68000 based machines can cost 10
times the price of the 6809 based
machines, they are easily 100 times
more powerful.

To compare these two machines at
the machine level requires a specific
project; the check book is simple, but
illustrative. This requires addition,
subtraction, movement of values, the
conversion of ASCII to binary. What
follows is not a complete program. It
does contain the main subroutines

required to create a simple check book
program in machine language on either
the 6809 or 68000.

To avoid rounding problems the
choice of in teger arithm etic is
preferred. The smallest unit of money
is the penny, so all calculations are
done in pennies.

Next we have to decide the
maximum value with which we are
going to deal. This value should be a
power of two and so large that we will
never reach it. Since 16 bits leaves us
with $327.67 as a maximum value we
take 32 bits as the size. This gives us
$21,474,863.54 as a maximum value.
Very few check books exceed this value
(positive or negative).

Good m achine code w riting
involves subroutines. Because the

comparisons here are so simple, the
subroutines may look silly. Remember
that the purpose is comparison and not
necessarily good code.

An implicit assumption in these
subroutines is that some operating
system is involved. Thus the user stack
on the 6809 is presumed to be
initialized. The 68000 is presumed to
be in user mode and the stack pointer is
initialized.

Movement

The first subroutine (MOVEATOB) is
to move a quantity from point A to
point B in memory. The 6809 code
requires two load and two store
instructions. These destroy the A and B
registers so they are pushed on the
stack before and recovered at the end of

No. 73 - July 1984 MICRO 15

the subroutine. The 68000 code can
move 32 bits from memory to memory
in one instruction without disturbing
any other registers.

Addition
Next we need a subroutine to add
numbers into an accumulator [see
SUM). For the 6809 adding the least
significant 16 bits is no problem. Since
the carry can not be added to the D
register, we have to go to byte
addressing to sum the most significant
bytes. Another way to do this is to
create a loop count with the B register
and use it as an offset. This runs slower
than straight inline code.

The 68000 code can add 32 bit
quantities in a single crack, so there is
no need to worry about the carry bit.
The ADD instruction is not as powerful
as the MOVE instruction. It can only
add with a data register. So we bring the
32 bit value into a data register and
then sum this into the accumulator.
Note that the MOVEM (move multiple
registers) can be used with a single
register as well as many registers.

ASCII to Binary
The simple example so far has assumed
that the numbers are already in
memory. Since most computers have
keyboards which work in ASCII, we
need a routine (GETNUM) to convert
an ASCH string to a binary number
which our subroutines can then add.
Every operating system has its own
method of getting characters from the
keyboard. Here we assume that a
subroutine can be written called
GETBYTE which will return a byte
from the keyboard into a register.

Once the string is pulled into
memory and all the digits are in the
range ASCII '0' to ASCII '9', the
process of conversion can begin.
Multiplying the result by 10 and adding
in each byte of the string converts from
human base 10 to computer base 2. A
simple way to multiply 32 bits by 10 is
to first multiply by 2 and save this in a
temporary location. Then multiply by
4 [giving a final multiplication by 8)
and add in the temporary value.
Multiplication by 2 consists of a shift
left.

For the 6809, the subroutine ROTL
rotates the result area left one bit.
C a llin g th is 3 tim e s w ith a
MOVEATOB and the SUM subroutines
completes the multiplication. Finally,
a digit from the input string is masked
off and added to the result. The
addition requires propagating the carry

MOVING 32 BIT VALUES CODE COMPARISON

6809 CODE
SUBROUTINE MOVEATOB MOVES A 32 BIT VALUE POINTED
TO BY

#
*
#
*
*
#

MOVEATOB:

*
#
*
#
*

MOVEATOB:

X TO THE PLACE POINTED TO BY Y.

PSHU D SAVE D REGISTER
LDD ,x GET 16 BITS
STD SAVE 16 BITS
LDD 2,X NEXT 16 BITS
STD 2,Y SAVED
PULU D RECOVER D REGISTER
RTS AND LEAVE

CODE
SUBROUTINE MOVEATOB MOVES A 32 BIT VALUE POINTED
TO BY A0 TO THE PUCE POINTED TO BY Al.

MOVE
RTS

■L (A0),(A1) MOVE 32 BITS
AND LEAVE

SUMMING 32 BIT VALUES CODE COMPARISON

6809 CODE
SUM ADDS A 32 BIT NUMBER POINTED TO BY X TO AN
ACCUMULATOR POINTED TO BY Y.

SUM: PSHU D SAVE REGISTER
LDD 2,X GET LEAST SIGN. BITS
ADDD 2,Y ADD TO ACCUMULATOR
STD 2,Y SAVE RESULT
LDA 1,X ONE BYTE UP
ADCA 1,Y ADD IN CARRY TO NEXT BYTE
STA 1,Y SAVE BYTE
LDA ,x MOST SIGN. BYTE
ADCA ADD TO ACCUMULATOR AND CARRY
STA SAVE RESULT
PULU D RESTORE REGISTER
RTS

£
AND LEAVE

* 68000 CODE
* SUM ADDS A 32 BIT NUMBER POINTED TO BY A0 TO AN
* ACCUMULATOR POINTED
£

TO BY A2

SUM: MOVEM.L D 0,- (SP) SAVE A REGISTER
M0VE.L (A0),D0 GET NUMBER
ADD.L D0,(A2) SUM INTO ACCUMULATOR
MOVEM.L (SP) +,D0 RECOVER REGISTER
RTS AND LEAVE

CONVERTING ASCII TO BINARY CODE

6809 CODE
GETNUM BRINGS AN ASCII STRING INTO MEMORY AND CONVERTS
IT TO A BINARY NUMBER. ALL ENTRIES ARE IN PENNIES.
ENTER WITH X POINTING TO PLACE FOR NUMBER TO GO.

o

o

o

o

©

©

o

©

16 MICRO No. 73 • July 1984

o

©

©

©

©

©

©

*
GETNUM:

GNLOOP:

*
* HAVE
#
KRUNCH:

*
* MULT
*
CNVRT:

PSHU D,X,Y SAVE REGISTERS
CLR 3,X ZERO RESULT AREA
CLR 2,X
CLR 1,X
CLR ,x
LEAY INSTRING POINT TO INPUT AREA
BSR GETBYTE GET BYTE FROM KEYBOARD
CMPA #13 WAS IT A CARRIAGE RETURN ?
BEQ KRUNCH THEN PROCESS STRING
CMPA #’0’ WAS IT TOO SMALL ?
BLT GNLOOP THE IGNORE IT
CMPA #'9' WAS IT TOO BIG ?
BGT GNLOOP THEN IGNORE IT
STA ,Y+ SAVE BYTE INTO STRING
BRA GNLOOP AND GET NEXT CHARACTER

[■RING IN MEMORY, NOW PROCESS IT.

CLR ,Y MARK END OF STRING
CLR COUNT BYTE COUNT INTO STRING

LY RESULT BY TEN.

LEAY TEMP POINT TO TEMP AREA
BSR ROTL RESULT TIMES 2
BSR MOVEATOB PUT INTO TEMP
BSR ROTL RESULT TIMES 4
BSR ROTL RESULT TIMES 8
EXG X, Y ADD RESULT
BSR SUM TO TEMP AND SAVE
EXG X, Y INTO RESULT
BCS TOOBIG ERROR: NUMBER TOO BIG

ADD IN BYTE FROM STRING

LEAY INSTRING GET NEXT
LDA COUNT BYTE
LDB A, Y FROM STRING
BEQ DONE NO MORE TO DO
CLRA HIGH BYTE OF D CLEARED
ANDB #15 KEEP LOW NIBBLE ONLY
ADDD 2,X ADD IN RESULT
STD 2,X SAVE RESULT
BCC BMPCNT NO CARRY TO PROPOGATE
LDA 1,X ADD IN
ADCA #0 CARRY BIT
STA 1,X TO EACH
BCC BMPCNT BYTE IF
LDA ,X NECESSARY
ADCA #0
STA ,x

* BUMP TO NEXT BYTE IN STRING AND CHECK FOR DONE
#
BMPCNT: INC COUNT BUMP STRING COUNTER

LDA COUNT DONE WITH STRING ?
TST A, Y
BNE CNVRT NOT YET

DONE: PULU D,X,Y RECOVER REGISTERS

£
RTS AND LEAVE

* ERROR HANDLER WILL BE MACHINE DEPENDENT

TOOBIG: (SEND ERROR MESSAGE TO SCREEN)
*
* DATA AREA
#
INSTRING: 20 BYTES
TEMP: 4 BYTES
COUNT: 1 BYTE

through all 32 bits of the result. The
loop is repeated until all string digits
have been converted or an error occurs.

Comparing the 68000 version of
GETNUM to the 6809 version, we see
that one instruction of the 68000 does
the same as two calls to a 10 line
subroutine of 6809 code. To shift 32
bits left once, takes ROTL for the 6809.
To shift 32 bits left twice, takes only
one line of code for the 68000. The
num ber of registers on the 68000,
reduces a lot of memory requirements.
While the 6809 m ust continually swap
pointers from register to memory, the
68000 keeps all values in registers, for
this simple example at any rate.

Conclusion

These simple comparisons are intended
to be educational. Experience w ith the
68000 sometimes makes writing code
on the 6809 frustrating. The ability to
address 16 megabytes of RAM on the
68000 versus 64 kilobytes on the 6809
makes one wonder if the term ' 'm icro ''
really applies anymore.

The reduced coding required for the
6 8 0 0 0 , in c re a s e s p ro g ra m m e r
productivity and decreases the tim e for
producing a final result. Obviously,
there are m any ways to solve each
problem. The flexibility of the 68000
and the num ber of registers, makes this
microprocessor the m ost powerful chip
to date. While the 6809 makes a great
hom e based computer, the power of the
68000 makes it far more useful in the
business or scientific environment.

Bibliography

" M C 6 8 0 9 P re lim in ary Program m ing
M anual", Motorola Inc., 1979
"C olor Computer Assembly Language
Program ming", W illiam Barden, Radio
Shack
"16-B it Microprocessor Users M anual",
Motorola, Prentice-Hall, 1982
"M otorola Microprocessors Data M anual",
Motorola, 1981, pgs. 4-298 to 4-329 andpgs.
4-661 to 4-710

SHE □ HE □ HE

Mr. Rosing received a B.S. Engineering
Physics from Univ. of Colorado in 1976, and
a Ph.D. in Nuclear Engineering from Univ.
of Wisconsin in 1982. He is presently Chief
Engineer for Network Telecommunications
in Denver.

==nni--------ini^=^=irni^=^=in[^^==int=

No. 73 - July 1984 MICRO 17

ATARI 48K * TRS C/C 32K
COMMODORE 64

747 FLIGHT SIMULATOR

ACTUAL SCREEN PHOTOGRAPH
Superbly realistic instrumentation and pilot's
view in lifelike simulation which includes
emergencies such as engine fires and systems
failures. This program uses high resolution
graphics to the fulf to produce the most reaiistic
flight-deck display yet seen on a home
computer. There are 21 real dials and 25 other
indicators. Your controls operate throttle,
ailerons, elevators, flaps, slats, spoilers,
landing gear, reverse thrust, brakes, etc. You
see the runway in true perspective. Uses
joysticks and includes options to start with
take-off or random landing approach. A real
simulation, not just another game! Cassette
only, $27.95 (add 6% In Calif.). Sole U.S.
distributor for D.A.C.C. Ltd., England.

F. Ashton
P.O. Box 7037

Chula Vista, CA 92012

Come See Us at
Commodore
Convention

Sat. & Sun,July 28-29
Hershey, Pennsylvania

The show is being run by the
M id -A t la n t ic R e g iona l
Com m odore A s s o c ia tio n
(MARCA) and there will be
speakers, workshops, and
exhibitors. For info, call
Mindy at 717/486-3274.

It’s an easy trip from all areas
of the east, from CT to VA,
and a lovely place with lots of
family fun.

Come visit us at
Booth Number 101

try some of our la te s t
software packages, and say
“ Hi” to the MICRO Staff.

SUBROUTINE TO ROTATE 4 BYTES LEFT ONCE
* ENTER
£

WITH X POINTING TO BYTES TO ROTATE

ROTL: PSHU D SAVE REGISTER
ANDCC #0 CLEAR CARRY BIT
LDB #3 SET COUNTER

R0TL00P: LDA B,X GET BYTE
ROLA TIMES 2
STA B,X SAVE BYTE
DECB DO 4 TIMES
BPL R0TL00P
PULU D RECOVER REGISTER

*
RTS AND LEAVE

* 68000 CODE
GETNUM BRINGS AND ASCII STRING INTO MEMORY AND
CONVERTS IT TO A BINARY NUMBER. ENTRIES ARE
ASSUMED TO BE IN PENNIES. ENTER WITH A3
POINTING TO THE PLACE FOR THE RESULT.

*
* SUBROUTINE TO SEND ERROR MESSAGE TO SCREEN
*
TOOBIG: SEND ERROR MESSAGE TO SCREEN
*
* DATA AREA
*
INSTRING: 20 BYTES
*
*

o

o

GETNUM: MOVEM.L D0-D2/A0 ,-(S P) SAVE REGISTERS
LEA INSTRING,A0 POINT TO INPUT AREA

GNLOOP: BSR GETBYTE GET KEYBOARD INPUT
CMP.B #13 ,D0 WAS IT A CARRIAGE RETURN ?
BEQ KRUNCH THEN PROCESS STRING
CMP.B # '0 ',D 0 WAS IT TOO SMALL ? o
BLT GNLOOP THEN IGNORE IT
CMP.B # '9 ',D 0 WAS IT TOO BIG ?
BGT GNLOOP THEN IGNORE IT
MOVE.B D0,(A0)+ SAVE BYTE INTO STRING ©

£
BRA GNLOOP AND GET NEXT BYTE

* HAVE
£

STRING IN MEMORY. NOW PROCESS INTO BINARY o
KRUNCH: CLR.B (A0) MARK END OF STRING

CLR.L D1 CLEAR RESULT

* LEA INSTRING,A0 POINT TO TOP OF STRING ©
* MULTIPLY RESULT BY TEN

CNVRT: LSL.L #1,D1 RESULT TIMES 2 ©
MOVE.L D1,D2 SAVE THIS RESULT
LSL.L #2,D1 RESULT TIMES 4 MORE FOR 8
ADD.L D2,D1 ADD IN 2 FOR 10 TIMES A

£
BVS TOOBIG NUMBER TOO BIG W

* NOW
£

ADD IN BYTE FROM STRING

MOVE.B (A0)+,D0 GET BYTE FROM STRING
©

AND.L #15 ,D0 MASK OFF ALL BUT LOW NIBBLE
ADD.L D0,D1 ADD TO RESULT
BVS TOOBIG TOO MANY DIGITS ©
TST.B (A0) DONE YET ?
BNE CNVRT NOPE, KEEP ADDING BYTES
MOVE.L D1(A3) SAVE RESULT MEMORY ©
MOVEM.L (SP)+,D0-D2/A0 RECOVER REGISTERS
RTS AND LEAVE

AlCftO

18 MICRO No. 73 ■ July 1984

Flight Simulator II
Microcomputer Simulation

At Its Best
by Chris W illiam s

By analyzing this design
masterpiece, programmers
may discover the elements
needed to make their own
software great

Until now, simulations designed for
microcomputers have been unexciting,
crude approximations of whatever real-
life phenomenon they were trying to
model. They were slow. They lacked
detail. And all too often, the modeling
equations employed were out-and-out
wrong. But no longer. A company
called SubLogic Corporation has seen
fit to single-handedly advance the
state-of-the-art in m icrocom puter
sim ulation technology beyond its
childhood stage into exciting, energetic
adolescence.

SubLogic was the manufacturer of
Flight Simulator, the first popular
microcomputer flight simulation. It
was designed to run on a 16K Apple II,
and it did so - more or less. Amid
relatively little fanfare, they've now
released a sequel designed for the newer
crop of Apples that sport 64K. There are
also versions out for other machines.
They call it Flight Simulator II, but
there all similarity between sequel and

original ends.
Flight Simulator was revolutionary

in its day. No one had done a flight
simulation on a microcomputer before
Bruce Artwick, co-founder of SubLogic,
worked his magic. The final product
ran reasonably well, but it was slow
and the graphics lacked pizazz.

Not so with Flight Simulator II. The
screen updates are faster and detailed
scenery for four different parts of the
U.S. are included with the package.
Additionally, the company advertises
the availablility of scenery disks for
other areas of the U.S. It all makes for
a degree of realism never before
approached on a microcomputer.

Flight
The airplane modeled in Flight
Simulator II is a Piper PA-28-181
Archer II; a single engine, 148 mph.,
non-retractable gear general aviation
aircraft. In real-life, the Archer II

performs very well while remaining
easy to fly. It is, consequently, an
excellent choice for the product.

The simulation flight controls are
on the keyboard. SubLogic includes
helpful cue-cards with the package that
specify which keys do what. As a pilot,
I found flying with keys instead of
a control yoke and rudder pedals
disconcerting at first, but I soon
adjusted. At my request, other pilots
tried it and agreed the adjustment came
easy. A non-pilot would probably never
notice.

The layout of the keyboard is
fascinating and all com puterists
writing user-interactive routines could
learn from it. The T,F,H,B diamond is
used as the control yoke of the aircraft.
It's perfect for one hand operation and
easily learned.

But it's in the use of the G key that
something innovative has been added.
Whatever the value of the aileron

No. 73 ■ July 1984 MICRO 19

control variables (set by F and H), they
are nulled to neutral with a single press
of G. Without this, several key presses
of either F or H would be necessary to
return a given setting to zero. They
gave this problem a lot of thought and
came up with an excellent answer.

Some of the most interesting
features of the product are in
the navigation and communications
radios. Here the simulation uses cntl-C
and cntl-N followed by greater-than or
less-than signs to simulate changing a
frequency. This is a good choice as cntl
keys are generally a bit awkward. Why
is that good? Because nothing in flying
is as awkward as changing radio
frequencies in turbulence. Making it
difficult on the simulation is entirely
appropriate.

The Editor

The product includes a particularly
valuable feature called "The Editor” .
At any time during flight, a touch of the
ESC key sends you to The Editor, and
from there you can change the current
flight situation to be anything you
wish.

The procedure is interesting and,
again, programmers should take note.
When you press the ESC key, a menu
entitled "Sim ulation Control" is
displayed. The menu is two pages long.
Moving off the bottom of one page
automatically sends you to the other.
These two pages contain a list of
simulation variables and their current
values. By positioning the cursor at the
proper variable line and entering a new
value, the user can quickly change his
situation without having to fly into it.

There are two valuable applications
for this feature. First is the ability to
set North and East coordinates which
allows the user to instantly change
from, say, the Chicago scenery area to
the Boston-N.Y. scenery area without a
time consuming crossing of the
intervening distance between.

The second valuable application has
to do with Critical Attitude Recovery.
CAR is required by the FAA (Federal
Aviation Administration) as an integral
part of the instrument flight training
curriculum for pilots attempting to add
an instrument rating to their license.
CAR is taught in an actual airplane,
generally as follows. The student,
wearing a hood to restrict his vision to
the instrument panel, is told to close
his eyes or cover them while the
instructor takes control of the aircraft.

The instructor then places the aircraft
in an "unusual” or "critical” attitude.
This is typically an extreme nose high
or low configuration with a very steep
bank included.

After a few seconds delay (to let the
gee-forces confuse the studen t's
equilibrium), the instructor tells the
student to open his eyes and, using no
o u ts id e v isual references (i.e .,
instruments only), recover the aircraft
to normal, straight-and-level flight.

The Editor allows a user to practice
this procedure. Extreme values for the
pitch, roll, and yaw variables can be
entered at the Simulation Control
menu and then, when the user exits
Edit mode, he is faced with a critical
attitude. Recovery technique is the
same on the simulator as in real life so
the exercise is excellent practice.

The Weather

Any pilot will tell you that the single
most important factor in flying is the
weather. Winds aloft, turbulence, and
clouds often determine more about a
flight than the p ilo t's w ishes.
Therefore, a simulation predicated on
its accuracy in modeling real-life
operation must have user variable
weather. Naturally, Flight Simulator II
does.

This is another area where the
computerist can learn from what
SubLogic has done. They've devoted
attention to detail and implemented
features to promote realism even where
it makes the programming complex.
Having this sort of professional attitude
is probably more important than sheer
technical skill in producing excellence
in a program.

SubLogic handled the weather by
allowing the user to define two layers
of clouds and four of wind. Wind
adjusts the airplane's ground speed for
given airspeeds and clouds simply clear
the screen to white when the airplane
is at a blanketed altitude. With cloud
bases set at about 500 feet, the airplane
"breaks out” on an ILS (Instrument
Landing System) instrument approach
lined up nicely with the runway,
making final descent and landing both
easy and immensely satisfying.

Incidently, when the #1 Nav. radio
is tuned to the ILS frequency, the
glideslope needle on the indicator
becomes active. The Localizer needle
acts as it does for all the VOR
navigational beacons. The pilots
reading this will appreciate the level of

detail SubLogic is covering there.
Turbulence is also permitted as a

user-defined feature. Its effect is
random motion of the instruments
which makes the airplane harder to fly.

Lastly, the user can specify a given
season. The effect of this is to change
the time of day when night falls. Oh
yes, there’s a night mode, and it is
hairy. Would you have expected
anything less?

Seeing the World

The reason most pilots love to fly is
nowhere near as esoteric and romantic
as they'd have you believe. It's really
very simple. The higher you are, the
more pleasant things you can see.
Flight Simulator II was clearly designed
with that in mind. The original Flight
Sim ulator was a forward-looking
sim ulation that had nothing of
consequence to see in its database. This
product allows the user to look in all
directions by using a special key
sequence. Such is the attention to
detail that when you look out the rear
window of the cabin, the rudder is
superimposed on the screen as a thick
vertical line. And, of course, when you
look out the side, the wingtip is
prominent at the bottom of the screen.

There's another viewing mode
included that is not realistic. It's called
Radar Mode. In this mode, the user can
get a top view of the world and an
impression of where the airplane is
with respect to landmarks. This is
unavailable on a real airplane and
therefore somewhat bizzare, but for
users to whom flying is unfamiliar it
probably is a valuable, perhaps even
vital, feature.

Emergency Procedures

What do you do if the engine quits?
That is the first question people new to
single-engine flying ask. The answer
(which I've found is always responded
to with a chuckle] is to execute the
emergency procedures all pilots are
trained to perform. But there are also
other emergencies in flying that a pilot
can encounter. Flight Simulator II has a
feature that will throw them all at a
pilot randomly to see how he reacts.
It's called the Reliability Factor. This is
a number the user selects from the
Editor's Simulation Control menu.
Anything less than 100 percent here
and things start to go wrong. The lower
the number, the more they go wrong.

20 MICRO No. 73 - July 1984

Conclusions

This is an excellent feature. The
malfunctions modeled are often subtle
and a pilot's inattention to his
instruments can result in a simple
problem becoming fatal. It's a good
training aid in that it really brings
home to the user the importance of
staying sharp and alert.

The Dogfight Game

They call it World War I Ace, and since
today's general aviation airplanes are
similar in performance to World War I
fighters, I suppose it was inevitable. As
an option of the Simulation Control
menu, the user may select the dogfight
game and fly against enemy fighter
aircraft.

Actually, it's not bad. It's not
simply a shoot ’em up. The user still
has to fly his airplane properly and
manuever into position in order to
bomb ground targets or shoot down
enemy fighters. If he fails to fly
properly, the airplane will stall and
crash, just as it would in the pure
simulation mode.

Rules of the game are standard; you
get points for shooting fighters down or
bombing fuel depots, and you lose
points for getting shot. Additionally,
your plane degrades in performance
each time it gets hit.

One rather interesting feature of
the game is worth special mention
because of its educational value to
computerists. Unlike any actual World
War I fighter, the one in this game has
air-to-air radar. What this does is
provide the user with information

c o n c e rn in g ta rg e ts w h ere no
information would otherwise have
been available.

That is im portant because it
demonstrates a flexibility on the part of
SubLogic. They concentrated hard on
realism throughout the product, but
they didn't lose their ability to perceive
the need for a feature that wasn't real.
That's rare. I often see programmers
who, once they learn to juggle
assembly language routines, refuse to
take advantage of those features of
BASIC that simply cannot run any
faster. That sort of locked-in attitude
costs hours of programming time. One
should guard against it.

This product is one of those that can be
perceived as something special even
before the marketplace has passed its
judgem ent. As such, one feels
compelled to examine it and determine
what core characteristic makes it what
it is and, further, what does it have in
common with other software programs
already acknowleged as masterpieces of
design.

Through this sort of analysis,
programmers can remove a bit of the
uncertainty in software design. They
can find certain prerequisite things
their programs must have to excel.
They can make the process more of a
science and less of an art. So what is it
about Flight Simulator n? What is it
that makes it superb? Is it something
that can be emulated?

My opinion is that the program was
planned intricately, written intricately,
and, m ost im portan t, debugged
intricately. That all comes down to one
phrase - attention to detail. They
covered everything. Frankly, most
programs don't cover half of what they
cou ld — and th e re fo re sh o u ld .
Programmers need to make a rule for
themselves. This rule would say that
on the day the "Finished!!” tag is hung
on a program, an X is placed on the
calendar for two weeks in the future.
The programmer must continue testing
and working on the program until that
day. Just think of how many bugs
would never find their way to market.

AKOO

No. 73 - July 1984 MICRO 21

MICRO No. 7 3 -July 1984

^e a tu n e -

Graphic Print for Commodore 64
(P & I t 1) by M ichael J. Keryan

Create a full-page printout from a Commdore 64
high resolution display

l ib e ih i ini imi i

Editor's Note: This is part 1 o f a three
part series. Parts 2 and 3 will appear in
subsequent issues.
I IE1E ih e in i= in rs i

The Commodore 64 is capable of
displaying some pretty impressive
graphics. Take a look at a few of the
games recently introduced, like
Neutral Zone, Blue Max, or Pogo Joe.
Most sophisticated games use a high-
resolution bit-mapped display rather
than the alphanumeric/graphic-symbol
display that most of you use for your
programs.

H ig h -re so lu tio n b it-m ap p ed
graphics (and the multi-color variation)
are described in the Commodore 64
Programmer's Reference Guide. The
manual even shows you how to create a
display using PEEKs and POKEs.
However, since several thousand
memory locations are involved, BASIC
is extremely slow. Any practical use of
high resolution graphics must use
machine language routines. Since most

people are not familiar with assembly
or machine language programming,
quite a few graphic aid and drawing
programs for the Commodore 64 have
been developed.

I was quite disappointed when I
learned that pictures that were created
on my Koala Pad could not be dumped
to my printer. I also found that even
th ough o th e r graphic packages
contained graphic dump routines, the
resulting printouts were much less
than perfect. Many routines give rather
small drawings, one dot on the screen
to one printed dot-this results in a
picture a little smaller than 3 inches by
4 inches. Many graphic dump routines
use the Commodore 1525 graphic
mode which can be emulated by a
num ber of interfaces w ith non-
C om m odore p rin te rs , b u t th is

technique is very slow. The most
serious fault of all of the routines I've
seen is their inability to recognize a
color on the screen and translate it to a
pattern that is approximately the same
darkness of the color. Most graphic
dumps print, at most, 3 or 4 varying
shades of black dots, even though one
of the colors represented is white.

Since a perfect graphic dump
program wasn't available, I decided to
write one. These were the objectives
that I set for this program:
1. It will work in either standard HiRes
or multi-color mode.
2. Printouts should be large, about the
same size as the display on my
Commodore 1701 color m onitor
(approx. 7" x 9”). This will fit nicely
on a normal sheet of paper with one
inch borders on all sides.

No. 73 - July 1984 MICRO 23

Figure i. Graphics Bit-map Mode

8192
8193
to

8199

8200
8201
to

8207

8512
8513
to

8519

40 Colunns of
8 bits each
for 320 dots
horizontally

25 Rows of
8 bits each
for 2O0 dots
vertically

Total of
8000 Bytes to

16191

3. The dump routine should work on
my printer as well as those of my
friends. These include NEC 8023,
Prowriter (C. Itoh), Epson MX-80 and
FX-80, and Gemini (Star) printers.
Sorry 1525 owners, you're on your
own.
4. Fast-to get the needed speed to
print a full page of graphics, the print
commands should directly access the
p rin thead (transparen t in terface
operation).
5. A unique dot pattern should be used
for each of the 16 colors, so that any
two adjacent colors can be distinguish
ed. Each pattern should vary in
intensity roughly in proportion to the
darkness of the color on the CRT.
Needless to say, the program should be
able to determine the color of each dot
on the screen.
6. Printouts of any part of the screen or
the whole screen should be possible.
7. Most im portant, the program
should be able to access graphic
displays made from a number of
graphic aid and drawing programs.

All of these objectives have been
met and the resulting Assembly
language program, GDUMP, is shown
in Listing 1. The program is not
especially compact; in fact, it uses
quite a bit of memory for lookup tables.
However, it works as per the above
objectives and is the best graphic screen
dump program that I have seen for the
Commodore 64.

High Resolution Bit Map

Before describing how the program
works, a short review of Commodore
64 bit map graphics is helpful. The
standard high resolution bit map screen
of the 64 is divided into 320 dots
horizontally and 200 dots vertically.
Each dot corresponds to a bit in
memory. Therefore, 320 x 200 = 64000
bits, or exactly 8000 bytes of memory
is required to hold this bit map pattern
of ones (bit is on) and zeros (bit is off).
Let’s assume our bit map memory
starts at $2000 hexadecimal (or 8192

decimal). The order of the bytes in
memory do not correspond to the
manner in which the lines are scanned
on the CRT-they are arranged in 8 byte
blocks as shown in Figure 1.

Despite the fact that the bytes are
arranged in memory a little strangely,
you can see that the screen is made up
of 320 bits across and 200 bits down.
You can think of this as: when a bit is
off (0) the corresponding dot will be off
(black), and when a bit is on (1) the dot
will be on (white). Many two-color
screens are set up like this, but the
HiRes screen (HIRES) is a little more
complicated than this, as shown in
Figure 2. For every 8 byte block of bit
map memory (or every 8x8 dot square)
there exists a corresponding one byte of
screen memory.

Let’s assume this IK block of
m em ory sta rts at $0400 (1024
decimal). The colors of the foreground
and background are picked up in the
screen byte. The way one byte can hold
two colors is by breaking the 8 bit byte
into two 4 bit nibbles. With 4 bits, each
nibble can hold a number from 0 to 15,
for one of the 16 colors. Therefore, for
every 8x8 square of dots, the color
displayed for any of these 64 dots can
be found in the high nibble of the
corresponding screen memory if the bit
is on (1) and in the low nibble if the bit
is off (0). Note that only two unique
colors can be displayed in any 8x8
block of dots, but an adjacent block can
have any two other (or the same]
colors.

Figure 2. Menory - High-res Mode

1024 IK Screen Menory

8192
to 8K Bit-nap Menory
8199

Color of each
individual bit
as follows:

0 - Low nibble of the screen
1 - High nibble of the screen

24 MICRO No. 73 ■ July 1984

Figure 3. Memory - Multicolor Mode

IK Color Menory

IK Screen Menory

8192
to 8K Bit-nap Menory
8199

Color of each
2 bit sequence
as follows:

00 - SD021
10 - Low screen

Multi-Color Bit Map Mode

If you thought the last section was
difficult, you may as well skip this
section right now. With the HIRES
mode, there are two separate blocks of
memory to worry about. In multi-color
mode (MULTI) there are three blocks of
memory, as shown in Figure 3. An
additional IK block of memory
(usually starting at $D800 or 55296
decimal) is also used to store color
information. In MULTT-color mode,
the horizontal resolution is reduced to
160 dots, half of that as HIRES mode.
Actually, there are still 320 dots on the
screen, but the color can only change
for every two dots. In every two-dot
sequence of the bit-map memory, we
can get four possible patterns of bits:
00, 01, 10, or 11. The pattern
determines where the color for these
two dots can be found. So in any 8x8
square of dots, a total of 4 colors are
possible. Three of these colors can be
different for every 8x8 square, but one
color is common to all squares-the
sequence of two zeros calls for the color
in the background color register $D021.

To get an accurate graphic screen
dump, we must first determine the
location of each bit in an BK bit-map
block, and determine the corres
ponding colors from either the upper or
lower nibble of screen memory, the
lower nibble of color memory, or from
the background color register. Each
color must be translated to a unique

01 - High screen
11 - Low color

pattern for a dot-matrix printer, and
these patterns must be sent to the
printer. A method is also required to
duplicate dot patterns for grids larger
than the original 320x200 dot grid.

GDUMP

The assembler (Listing 1) is com
mented, so you should be able to follow
along, if you are familiar with machine
language. The program is assembled to
begin at $5000. There were very few
memory areas left to put this code,
when you want it to be compatible
with the files containing graphic data
from various third party routines. I
decided to stick it right in the middle of
your BASIC workspace. All the
important constants were brought near
the beginning to allow easy changes.
The minimum and maximum hor
izontal and vertical byte numbers are
located at $5003-$5006. The upper left
of the screen is 0,0; the lower right is
39,199. You can change these if you
want only part of the screen printed
(but you will also have to change
N1-N4 and EN1-EN2 in GSETUP and
ESETUP).

There are four modes of operation:
0. Mode 0 is for two-color HIRES
printouts. Every bit equal to 1 prints a
2x2 black square.
1. Mode 1 inverts the dots of mode 0.
Bits that are equal to 1 print a 2x2
white area; bits equal to 0 print black
dots.

2. This is MULTIcolor mode in which
colors are determined from one of four
possibilities as in Figure 3.
3. This is HIRES color mode in which
colors are determined from either high
or low nibbles of the screen memory as
in Figure 2.

The starting page number for the
bit-map memory, screen memory, and
co lo r m em o ry are s to re d in
$5008-$500A. These can be changed
from the defaults ($2000, $0400 and
$D800) for non-standard screen
configurations.

The program begins by jumping to a
printer setup routine. For TYMAC
CONNECTION interfaces, an extra
sequence is required before any other
sequences. This is equivalent to
CHR$(27J "W"CHR$(00). It disables
the width command in the interface
and is necessary to disable printing a
carriage return after 80 graphic bytes.
The printer channel is opened with a
secondary address which puts the
interface into transparent mode (5 for
CARDCO, 6 for CONNECTION). Next
the correct codes are sent to change the
printer spacing to 1/9 inch vertically,
to eliminate blank spaces between
lines. These sequences are different for
NEC/C.ITOH and EPSON/GEMINI
printers. Then a carriage return is sent
to start the printer at a known state.

Three loops can be found in the
code: LOOPH, LOOPV and LOOPN.
LOOPH cycles through the 40
horizontal screen bytes. LOOPV cycles
through the 200 vertical bytes. LOOPN
cycles through the repeat counter REPT
several times for each of the 200 lines.
REPT is set up to 3 for NEC/C.ITOH
and 2 for EPSON/GEMINI. This gives a
total of 600 or 400 dots, respectively for
the top to bottom CRT scan [left to
right on the printer). For both types of
printers, this gives a line length of
about 7 inches. Actually LOOPH is
cycled through twice, since two dots
are printed for every horizontal dot on
the screen. If you follow through the
logic in the area of LOOPN, you will
see that every byte sent to the printer
(for the 8 dots on the printhead) is made
up of two 4 bit nibbles, each derived
from a two-bit horizontal dot sequence
on the screen.

S u b ro u tin e CHKREV sim ply
reverses the 8-bit pattern for EPSON
type printers since the printhead is set
up the opposite of NEC type print
heads. This routine also replaces every
$0D bit pattern with $0B. For an

No. 73 - July 1984 MICRO 25

Listing 1

©
GRAPHIC SCREEN DUMP VI.2 i

M. J. KERYAN 3-27-84 5028 IB ESPC BYT $1B LINE SPACING

5029 4l EA BYT $41 OF 8/72 INCH

O TO BE USED WITH 'TYMAC CONNECTION' 502A 08 ENN1 BYT $08 FOR EPSON TYPE
OR SIMILAR TYPE OF INTERFACE 502B 0D ERET2 BYT $0D
AND PRINTERS— f

NEC 8023, PROWRITER, C .ITOH 8510 00FD PL EQU $FD MEMORY USED FOR
O OR EPSON WITH GRAFTRAX OR 00FE PH EQU $FE INDIRECT

EPSON COMPATIBLE PRINTER. > POINTERS

502C 00 DATA BYT 0 MEMORY REGISTERS

© 502D 00 VBYT BYT 0 USED IN THIS
5000 ORG $5000 502E 00 HBYT BYT 0 PROGRAM

. 502F 00 NBYT BYT 0
5000 4C 39 50 GDUMP JMP GSTART 5030 00 TBYT BYT 0

© . 5031 00 NIBL BYT 0
5003 FF MINH BYT $FF HORIZ. MIN.-l 5032 00 DATAXX BYT 0
5004 27 MAXH BYT 39 HORIZ. MAX. 5033 00 DATAYY BYT 0

_ 5005 00 MINV BYT 0 VERT. MIN. 5034 00 DATATM BYT 0
U 5006 C8 MAXV BYT 200 VERT. MAX.+l 5035 00 COLORB BYT 0

5007 03 REPT BYT 3 REPEAT BYTES 5036 00 SCREEN BYT 0
5008 20 BMPG BYT $20 BIT MAP PAGE # 5037 00 ETEMP1 BYT 0

© 5009 04 SCPG BYT $04 SCREEN PAGE # 5038 00 ETEMP2 BYT 0
500A D8 CLPG BYT $D8 COLOR PAGE # }
500B 00 PTYPE BYT $00 PRINTER 0071 GFILE EQU $71 PRINTER FILE #

j 0 = NEC/C.ITOH TYPE — >
© 1 = EPSON TYPE FFCC CLRCHN EQU $FFCC KERNAL ROUTINES

500C 06 SECADR BYT $06 SECONDARY FFC3 CLOSE EQU $FFC3
: (TRANSPARENT) ADDR FFBA SETLFS EQU $FFBA

© 500D 00 INTERF BYT $00 INTERFACE FFBD SETNAM EQU $FFBD

: 0 = CONNECTION TYPE — FFC0 OPEN EQU $FFC0
i 1 = OTHER FFC9 CHKOUT EQU $FFC9

500E 02 MODE BYT $02 MODE TYPE i
© j 5039 20 21 52 GSTART JSR SETUP OPEN PORT, ETC.

MODE 0 = NORMAL HIRES B/W 503C AD 04 50 LDA MAXH

\ 1 = INVERTED HIRES B/W 503F 8D 2E 50 STA HBYT INIT. WIDTH

) 2 = MULTI-COLOR 5042 A9 00 LDA #$00
©

j 3 = HIRES COLOR 5044 8D 31 50 STA NIBL FIRST NIBBLE

j 5047 AD 05 50 LOOPH LDA MINV

500F 0D GSETUP BYT $0D SET UP CARR RET 504A 8D 2D 50 STA VBYT INIT. HEIGHT

© 5010 20 SP1 BYT $20 AND 4 SPACES 504D A0 00 LDY #$00

5011 20 SP2 BYT $20 FOLLOWED BY 504F AD 0B 50 OUTNUM LDA PTYPE ;PRINTER TYPE

5012 20 SP3 BYT $20 THE NEC/C.ITOH 5052 D0 0D BNE 0UTN2

5013 20 SP4 BYT $20 REQUIRED 5054 B9 0F 50 OUTN1 LDA GSETUP,Y ;OUTPUT

© 5014 IB ESC BYT $1B GRAPHIC CONTROL 5057 20 CA FI JSR $F1CA ;GRAPHIC

5015 53 ES BYT $53 SEQUENCE— 505A C8 INY ;CONTROL CODES

5016 30 N1 BYT $30 ESC, S, Nl, N2, 505B C0 0B CPY #$0B ; FOR 1 LINE

n 5017 36 N2 BYT $36 N3, N4 WHERE 505D D0 F5 BNE OUTN1 ;11 BITS

^ 5018 30 N3 BYT $30 N'S ARE 4 DIG. 505F F0 0B BEQ LOOPV

5019 30 N4 BYT $30 BYTE COUNT 5061 B9 1A 50 0UTN2 LDA ESETUP,Y ;OUTPUT

j 5064 20 CA FI JSR $F1CA ;GRAPHIC

© 501A 0D ESETUP BYT $0D SET UP CARR RET 5067 C8 INY ;CONTROL CODES

501B 20 ESP1 BYT $20 AND 4 SPACES 5068 C0 09 CPY #$09 ;FOR 1 LINE

501C 20 ESP2 BYT $20 FOLLOWED BY 506A D0 F5 BNE 0UTN2 ;9 BYTES

501D 20 ESP3 BYT $20 THE EPSON 506C AD 07 50 LOOPV LDA REPT

© 501£ 20 ESP4 BYT $20 REQUIRED 506F 8D 2F 50 STA NBYT INIT. COUNTER

501F IB EESC BYT $1B GRAPHIC CONTROL 5072 A9 00 LDA #$00

5020 4b EK BYT $4B SEQUENCE— 5074 8D 30 50 STA TBYT RIGHT BYTE

0 5021 90 EN1 BYT $90 ESC, K, Nl, N2 5077 20 B4 51 JSR DATACL

5022 01 EN2 BYT $01 507A 8D 2C 50 STA DATA

i 507D AD 2C 50 LOOPN LDA DATA

5023 IB SPC BYT $1B LINE SPACING 5080 29 03 AND #$03 00000011

© 502A 54 TEE BYT $54 OF 16/144 INCH 5082 20 0B 51 JSR DATACO CONVERT TO

5025 31 NN1 BYT $31 FOR C . ITOH/NEC 5085 29 0F AND #$0F ,4 BITS

5026 36 NN2 BYT $36 5087 8D 34 50 STA DATATM HOLD IT

© 5 0 2 7
0D RET2 BYT $0D 508A AD 2C 50 LDA DATA

26 MICRO No. 73 ■ July 1984

508D 29 0C AND #$0C ;00001100 5129 18 CLC
508F 4A LSR A 512A 90 0F BCC ONETVO

5090 4a LSR A 512C E0 03 ONE CPX #$03 ;TVO BITS = 11? o
5091 20 0B 51 JSR DATACO ;4 MORE BITS 512E F0 IF BEQ THREE

5094 0A ASL A 5130 AD 36 50 LDA SCREEN ;TWO BITS = 10
5095 0A ASL A 5133 E0 02 CPX #$02 o
5096 0A ASL A 5135 F0 04 BEQ ONETVO
5097 0A ASL A 5137 4A HINIB LSR A
5098 0D 34 50 ORA DATATM ;COMBINE 8 BITS 5138 4A LSR A
509B 20 DB 50 JSR CHKREV ;CHECK IF REVERSE 5139 4A LSR A ;HIGH NIBBLE o
509E 20 CA FI JSR $F1CA ;OUTPUT BYTE 513A 4a LSR A ;CONTAINS COLOR
50A1 CE 2F 50 DEC NBYT ;END OF REPEAT? 513B 29 0F ONETVO AND #$0F
50A4 F0 0B BEQ NEND 513D AA TAX o
50A6 AD 30 50 LDA TBYT 513E BD BE 52 LDA TABCOL,X ;GET SHADE #w

50A9 49 01 EOR #$01 ;TOGGLE BYTE # 5141 AA GETCOD TAX
50AB 8D 30 50 STA TBYT 5142 BD CE 52 LDA TABCOD,X ;GET CODE
50AE 18 CLC 5145 AE 30 50 LDX TBYT o
50AF 90 CC BCC LOOPN ;CONTINUE REPEAT 5148 F0 04 BEQ DATAE ;ALTERNATE LOW
50B1 EE 2D 50 NEND INC VBYT 514 a 4A LSR A ;AND HIGH
50B4 AD 2D 50 LDA VBYT 514B 4A LSR A ;NIBBLES OF
50B7 CD 06 50 CMP MAXV ;END OF VERT.? 514C 4A LSR A ;CODE o
50BA D0 B0 BNE LOOPV ;CONTINUE VERT. 514D 4A LSR A
50BC AD 31 50 LDA NIBL 514E 60 DATAE RTS
50BF 49 01 EOR #$01 ;TOGGLE NIBBLE 514F AD 35 50 THREE LDA COLORB ;COLOR IN COLOR o
50C1 8D 31 50 STA NIBL 5152 18 CLC ;MEMORY
50C4 AD 31 50 LDA NIBL 5153 90 E6 BCC ONETVO
50C7 D0 0F BNE TOLPH 5155 E0 00 HIR0 CPX #$00 ;BITS 00
50C9 CE 2E 50 DEC HBYT 5157 D0 06 BNE HIR3 o
50CC AD 2E 50 LDA HBYT 5159 AD 36 50 LDA SCREEN ;USE LOVER
50CF CD 03 50 CMP MINH 515C 4C 3B 51 JMP ONETVO ;NIBBLE
50D2 D0 04 BNE TOLPH 515F E0 03 HIR3 CPX #$03 ;BITS 11 A
50D4 20 98 52 JSR SETDWN ;UNDO SETUP 5161 D0 06 BNE HIR2
50D7 60 RTS 5163 AD 36 50 LDA SCREEN ;USE UPPER
50D8 4C 47 50 TOLPH JMP LOOPH ;BRANCH TOO LONG 5166 4C 37 51 JMP HINIB ;NIBBLE

i 5169 E0 02 HIR2 CPX #$02 ;BITS 10 o
50DB 8D 37 50 CHKREV STA ETEMP1 516B D0 IB BNE HIR1
50DE 8D 38 50 STA ETEMP2 516D AD 36 50 LDA SCREEN ;GET UPPER
50E1 AD 0B 50 LDA PTYPE j IF PRINTER IS 5170 20 37 51 JSR HINIB
50E4 F0 IB BEQ PCR ;EPSON, THEN 5173 20 A3 51 JSR HIRC o
50E6 A9 00 LDA #$00 ;REVERSE DOT 5176 0A ASL A ;DATA IN BITS
50E8 8D 38 50 STA ETEMP2 ;ORDER 5177 0A ASL A ;--- **—
50EB A0 08 LDY #$08 5178 8D 32 50 STA DATAXX o
50ED B9 F2 52 EP1 LDA TABBIT-1, Y 517B AD 36 50 LDA SCREEN
50F0 2D 37 50 AND ETEMP1 517E 20 3B 51 JSR ONETVO ;GET LOVER
50F3 F0 09 BEQ EP2 5181 20 A3 51 JSR HIRC ; **
50F5 B9 FA 52 LDA TABTIB-1,Y 5184 0D 32 50 ORA DATAXX ;COMBINE o
50F8 0D 38 50 ORA ETEMP2 5187 60 RTS
50FB 8D 38 50 STA ETEMP2 5188 AD 36 50 HIR1 LDA SCREEN ;BITS 01
50FE 88 EP2 DEY 518B 20 3B 51 JSR ONETWO ;GET UPPER
50FF D0 EC BNE EP1 518E 20 A3 51 JSR HIRC o
5101 AD 38 50 PCR LDA ETEMP2 ;IF BIT CODE 5191 0A ASL A ;DATA BITS
5104 C9 0D CMP #$0D ;IS SAME AS 5192 0A ASL A ; **
5106 D0 02 BNE PRET ;CARR RETURN, 5193 8D 32 50 STA DATAXX o
5108 A9 0B LDA #$0B ;CHANGE IT 5196 AD 36 50 LDA SCREEN
510 A 60 PRET RTS 5199 20 37 51 JSR HINIB ;GET LOVER

519C 20 A3 51 JSR HIRC ;----- **
510B AA DATACO TAX ;X = 2 BITS 519F 0D 32 50 ORA DATAXX ;COMBINE o
510C AD 0E 50 LDA MODE 51A2 60 RTS
510F C9 02 CMP #$02 ;< 2?
5111 B0 0B BCS D0 ;NO, GO ON 51A3 48 HIRC PHA ;THIS ROUTINE

5113 BD DE 52 ZERONE LDA HICOD,X ;YES, 0 OR 1 51A4 29 03 AND #$03 ; AVERAGES THE
u

5116 AE 0E 50 LDX MODE 51A6 8D 33 50 STA DATAYY ;THE BITS

5119 F0 02 BEQ D1

511B 49 0F EOR #$0F ;INVERT GRAPHICS 51A3 48 HIRC PHA ;THIS ROUTINE o
511D 60 D1 RTS 51A4 29 03 AND #$03 ; AVERAGES THE

511E C9 03 D0 CMP #$03 ;MODE 3? 51A6 8D 33 50 STA DATAYY ;THE BITS

5120 F0 33 BEQ HIR0 ;YES, HIRES COLOR 51A9 68 PLA **

5122 E0 00 MULTI CPX #$00 ;TVO BITS = 00? 51AA 4A LSR A ;AND o
5124 D0 06 BNE ONE 51AB 4a LSR A ;---- **—

5126 AD 21 D0 LDA $D021 ;COLOR IN $D021 51AC 29 03 AND #$03

No. 73 - July 1984 MICRO 27

51AE 18 CLC 5231 20 BA FF JSR SETLFS ;T0 AVOID EXTRA

© 51AF 6D 33 50 ADC DATAYY 5234 A9 00 LDA #$00 ;CARR RETURNS

51B2 4a LSR A ;DIVIDE BY 2 5236 20 BD FF JSR SETNAM

51B3 60 RTS 5239 20 C0 FF
523C B0 56

JSR OPEN

BCS GCLOSE
© 51B4 AD 2D 50 DATACL LDA VBYT ;GET MEMORY 523E A2 71 LDX #GFILE

51B7 4A LSR A 5240 20 C9 FF JSR CHKOUT

51B8 4A LSR A 5243 A9 IB LDA #$1B

© 5 1 B 9
4a LSR A 5245 20 CA FI JSR $F1CA

° 5 IB A AA TAX 5248 A9 57 LDA #$57
5 IBB BD FC 54 LDA HCTAB,X 524A 20 CA FI JSR $F1CA
51BE 85 FE STA PH 524D A9 00 LDA #$00

© 51C0 BD E3 54 LDA LCTAB,X 524F 20 CA FI JSR $F1CA

51C3 18 CLC 5252 A9 0D LDA #$0D
51C4 6D 2E 50 ADC HBYT 5254 20 CA FI JSR $F1CA

51C7 85 FD STA PL 5257 A9 71 LDA #GFILE

© 51C9 90 02 BCC CL3 5259 20 C3 FF JSR CLOSE

51CB E6 FE INC PH 525C A9 71 SET2 LDA #GFILE

51CD A5 FE CL3 LDA PH 525E AC 0C 50 LDY SECADR

O 51CF 48 PHA 5261 A2 04 LDX #$04
51D0 18 CLC 5263 20 BA FF JSR SETLFS

51D1 6D 09 50 ADC SCPG 5266 A9 00 LDA #$00

51D4 85 FE STA PH 5268 20 BD FF JSR SETNAM

© 51D6 A0 00 LDY #$00 526B 20 C0 FF JSR OPEN

51D8 B1 FD LDA (PL),Y 526E B0 24 BCS GCLOSE

5 IDA

A

8D 36 50

)

STA SCREEN ;SCREEN MEMORY 5270 A2 71

5272 20 C9 FF

LDX #GFILE

JSR CHKOUT

** 51DD 68 PLA 5275 A0 00 LDY #$00

5 IDE 18 CLC 5277 AD 0B 50 LDA PTYPE

5 IDF 6D 0A 50 ADC CLPG 527A D0 0C BNE OUTSP2

© 51E2 85 FE STA PH 527C B9 23 50 OUTSP LDA SPC,Y

51E4 B1 FD LDA (PL),Y 527F 20 CA FI JSR $F1CA

51E6 8D 35 50 STA COLORB ; COLOR MEMORY 5282 C8

5283 C0 05

INY
CPY #$05

© 51E9 AC 2E 50 LDY HBYT 5285 D0 F5 BNE OUTSP

51EC AE 2D 50 LDX VBYT 5287 60 RTS

51EF BD 03 53 LDA LTAB,X 5288 B9 28 50 OUTSP2 LDA ESPC,Y

© 51F2 85 FD STA PL 528B 20 CA FI JSR $F1CA

° 51F4 BD CB 53 LDA HTAB,X 528E C8 INY

51F7 85 FE STA PH 528F C0 04 CPY #$04

51F9 B9 93 54 LDA LTABA,Y 5291 D0 F5 BNE 0UTSP2

© 51FC 18 CLC 5293 60 RTS

51FD 65 FD ADC PL 5294 20 98 52 GCLOSE JSR SETDWN

51FF 85 FD STA PL 5297 60 RTS

5201 90 02 BCC CL1 i
© 5203 E6 FE INC PH 5298 A9 0D SETDWN LDA #$0D ;CARR RETURN

5205 B9 BB 54 CL1 LDA HTABA,Y 529A 20 CA FI JSR $F1CA

5208 18 CLC 529D A9 0C LDA #$0C ;FORM FEED

5209 65 FE ADC PH 529F 20 CA FI JSR $F1CA

520B 85 FE STA PH 52A2 A9 IB LDA #$1B ;LINE SPACING

520D 18 CLC 52A4 20 CA FI JSR $F1CA ;BACK TO 1/6 IN.

520E 6D 08 50 ADC BMPG 52A7 AD 0B 50 LDA PTYPE

© 5211 85 FE STA PH 52AA D0 04 BNE EPCL

5213 A0 00 LDY #$00 52AC A9 4l LDA #$4l ;ESC A FOR NEC/

5215 B1 FD LDA (PL), Y 52AE D0 02 BNE LSPC ; OR C. ITOH

5217 AE 31 50 LDX NIBL 52B0 A9 32 EPCL LDA #$32 ;ESC 2 FOR

** 521A F0 04 BEQ CL2 52B2 20 CA FI LSPC JSR $F1CA ; EPSON

521C 4a LSR A 52B5 20 CC FF JSR CLRCHN

521D Ak LSR A 52B8 A9 71 LDA #GFILE

© 521E Ak LSR A 52BA 20 C3 FF JSR CLOSE

521F Ak LSR A ;ACCUM = BIT MAP 52BD 60 RTS

5220 60 CL2 RTS ;BYTE J
52BE 0F TABCOL BYT 15,0,11,3,10,7,12,1

© 5221 A9 71 SETUP LDA #GFILE 52C6 08 BYT 8,14,5,13,9,2,6,4

5223 20 C3 FF JSR CLOSE 52CE 00 TABCOD BYT $00,$20,$04,$28

5226 AD 0D 50 LDA INTERF 52D2 0A BYT $0A,$25,$4A,$A5

© 5229 D0 31 BNE SET2 52D6 69 BYT $69,$87,$2D,$A7

v 522B A9 71 LDA #GFILE ;FOR CONNECTION, 52DA 6D BYT $6D,$DB,$9F,$FF

522D A0 00 LDY #$00 ;WIDTH MUST BE 52DE 00 HICOD BYT $00,$03,$0C,$0F

522F A2 04 LDX #$04 ;SET TO ZERO TO 52E2 28 AUTHOR BYT '(C) M.KERYAN 1984'

28 MICRO No. 73 ■ July 1964

unexplainable reason, my printer-
interface would print two $0D patterns
for every one sent, messing up the 600
byte counter. Instead of tracking down
the reason for this, I eliminated any
chance for this glitch to occur.

At the beginning of every line a
carriage return is sent, followed by 4
spaces (to center the drawing), then a
code is sent to set up the printer to
accept the correct number of graphic
characters (600 or 400 as explained
above). These are the labeled GSETUP
and ESETUP.

Subroutine DATACL returns the
contents of three memory cells, based
on the current horizontal and vertical
coordinates: the SCREEN memory, the
COLOR memory and the bit-map
memory in the accumulator. To avoid
confusing calculations and to speed
things up a bit, lookup tables are used
extensively in this routine.

Subroutine DATACO is entered
with the lower two bits of the
accumulator equal to two bits from the
bit-map memory. When finished, this
routine returns with a four bit matrix
pattern that eventually gets sent as half
of a byte to the printhead. This routine
works differently for the four modes of
operation. In modes 0 and 1, simple 4
bit patterns duplicate (or invert) the
original 2 bit sequence. In modes 2 and
3, the correct colors are determined.
Then unique patterns are found
through lookup tables TABCOL and
TABCOD. Note that each of the 16
colors are associated with two different
4 bit pattem s-the high and low nibbles
of TABCOD. These two different codes
are alternately used when the same
byte is repeated to avoid vertical lines
on the printed.

After the picture is printed,
SETDWN sends a carriage return and a
form feed to the printer and then
changes the line spacing back to 1/6
inch for normal printer operation.

GDUMP can be run by your BASIC
programs by POKEing the required set
up parameters into the area in the
beginning of the program, then SYS
20480. Next month we'll continue this
series by adding another small machine
language program and a BASIC program
that will allow GDUMP to print
pictures made from SIMONS' BASIC,
ULTRABASIC-64, DOODLE, KOALA-
PAINTER and TPUG's SLIDESHOW.
For those of you who don't have an
Assembler to enter GDUMP, MICRO
will provide these programs on 1541
disks for $15 (US). Order MicroDisk

52F3 80 40 20 TABBIT BYT
52FB 01 02 04 TABTIB BYT
5303 00 01 02 LTAB BYT
530B 40 41 42 BYT
5313 80 81 82 BYT
531B C0 Cl C2 BYT
5323 00 01 02 BYT
532B 40 41 42 BYT
5333 80 81 82 BYT
533B C0 Cl C2 BYT
5343 00 01 02 BYT
534B 40 41 42 BYT
5353 80 81 82 BYT
535B C0 Cl C2 BYT
5363 00 01 02 BYT
536B 40 41 42 BYT
5373 80 81 82 BYT
537B C0 Cl C2 BYT
5383 00 01 02 BYT
538B 40 41 42 BYT
5393 80 81 82 BYT
539B C0 Cl C2 BYT
53A 3 00 01 02 BYT
53AB 40 41 42 BYT
53B3 80 81 82 BYT
53BB C0 Cl C2 BYT
53C3 00 01 02 BYT
53CB 00 00 00 HTAB BYT
53D3 01 01 01 BYT
53 DB 02 02 02 BYT
53E3 03 03 03 BYT
53EB 05 05 05 BYT
53F3 06 06 06 BYT
53FB 07 07 07 BYT
5403 08 08 08 BYT
540B 0A 0A 0A BYT
5413 0B 0B 0B BYT
541B 0C 0C 0C BYT
5423 0D 0D 0D BYT
542B 0F 0F 0F BYT
5433 10 10 10 BYT
543B 11 11 11 BYT
5443 12 12 12 BYT
544B 14 14 14 BYT
5453 15 15 15 BYT
545B 16 16 16 BYT
5463 17 17 17 BYT
546B 19 19 19 BYT
5473 1A 1A 1A BYT
547B IB IB IB BYT
5483 1C 1C 1C BYT
548B IE IE IE BYT
5493 00 08 10 LTABA BYT
549B 40 48 50 BYT
54A3 80 88 90 BYT
54AB C0 C8 D0 BYT
54B3 00 08 10 BYT
54BB 00 00 00 HTABA BYT
54C3 00 00 00 BYT
54CB 00 00 00 BYT
54D3 00 00 00 BYT
54DB 01 01 01 BYT
54E3 00 28 50 LCTAB BYT
54EB 40 68 90 BYT
54F3 80 A8 D0 BYT
54FB C0 BYT
54FC 00 00 00 HCTAB BYT
5504 01 01 01 BYT
550C 02 02 02 BYT
5514 03 BYT
5515 END

$8 0 ,$ 4 0 ,$20 ,$10 ,$08 ,$04 ,$02 ,$01
$01 ,$02 ,$04 ,$08 ,$10 ,$20 ,$40 ,$80
$0 0 ,$ 0 1 ,$ 0 2 ,$03 ,$04 ,$05 ,$06 ,$07 ©
$ 4 0 ,$ 4 1 ,$42 ,$43 ,$44 ,$45 ,$46 ,$47
$ 8 0 ,$ 8 1 ,$82 ,$83 ,$84 ,$85 ,$86 ,$87
$C0, $C1,$C2, $C3, $C4,$C5, $C6, $C7
$0 0 ,$ 0 1 ,$ 0 2 ,$03 ,$04 ,$05 ,$06 ,$07 °
$4 0 ,$ 4 1 ,$42 ,$43 ,$44 ,$45 ,$46 ,$47
$8 0 ,$ 8 1 ,$82 ,$83 ,$84 ,$85 ,$86 ,$87
$C0,$C1,$C2,$C3, $C4,$C5, $C6,$C7 q
$ 0 0 ,$ 0 1 ,$ 0 2 ,$03 ,$04 ,$05 ,$06 ,$07
$4 0 ,$ 4 1 ,$42 ,$43 ,$44 ,$45 ,$46 ,$47
$8 0 ,$ 8 1 ,$82 ,$83 ,$84 ,$85 ,$86 ,$87
$C0,$C1,$C2,$C3, $C4,$C5, $C6,$C7 ©
$0 0 ,$ 0 1 ,$02 ,$03 ,$04 ,$05 ,$06 ,$07
$4 0 ,$ 4 1 ,$42 ,$43 ,$44 ,$45 ,$46 ,$47
$80, $81, $82, $83, $84, $85, $86, $87
$C0, $C1,$C2,$C3, $C4,$C5, $C6,$C7 ®
$ 0 0 ,$ 0 1 ,$02 ,$03 ,$04 ,$05 ,$06 ,$07
$ 4 0 ,$ 4 1 ,$42 ,$43 ,$44 ,$45 ,$46 ,$47
$ 8 0 ,$ 8 1 ,$ 8 2 ,$83 ,$84 ,$85 ,$86 ,$87 ©
$C0, $C1,$C2, $C3, $C4,$C5, $C6, $C7
$00, $01, $02, $03, $04, $05, $06, $07
$ 4 0 ,$ 4 l ,$42 ,$ 4 3 ,$ 4 4 ,$ 4 5 ,$ 4 6 ,$ 4 7
$ 8 0 ,$ 8 1 ,$ 8 2 ,$83 ,$84 ,$85 ,$86 ,$87 ©
$C0, $C1, $C2, $C3, $C4, $C5, $C6, $C7
$ 0 0 ,$ 0 1 ,$ 0 2 ,$03 ,$04 ,$05 ,$06 ,$07
$00 ,$00 ,$00 ,$00 ,$00 ,$00 ,$00 ,$00 @
$01 ,$01 ,$01 ,$01 ,$01 ,$01 ,$01 ,$01
$02 ,$02 ,$02 ,$02 ,$02 ,$02 ,$02 ,$02
$03, $03, $03, $03, $03, $03, $03, $03
$ 0 5 ,$05 ,$05 ,$05 ,$05 ,$05 ,$05 ,$05 ©
$06 ,$06 ,$06 , $06 ,$06 ,$06 ,$06 ,$06
$07 ,$07 ,$07 ,$07 ,$07 ,$07 ,$07 ,$07
$ 0 8 ,$08 ,$08 ,$08 ,$08 ,$08 ,$08 ,$08
$0A, $0A, $0A, $0A, $0A, $0A, $0A, $0A ©
$0B, $0B, $0B, $0B, $0B, $0B, $0B, $0B
$0C, $0C, $0C, $0C, $0C, $0C, $0C, $0C
$0D, $0D, $0D, $0D, $0D, $0D, $0D, $0D q
$0F, $0F, $0F, $0F, $0F, $0F, $0F, $0F
$10 ,$10 ,$10 ,$10 ,$10 ,$10 ,$10 ,$10
$11 ,$11 ,$11 ,$11 ,$11 ,$11 ,$11 ,$11
$12,$12,$12,$12,$12,$12,$12,$12 ©
$14,$14,$14,$14,$14,$14,$14,$14
$15,$15,$15,$15,$15,$15,$15,$15
$16,$16,$16,$16,$16,$16,$16,$16
$17,$17,$17,$17,$17,$17,$17,$17 0
$19,$19,$19,$19,$19,$19,$19,$19
$1A,$1A,$1A,$1A,$1A,$1A,$1A,$1A
$1B,$1B,$1B,$1B,$1B,$1B,$1B,$1B ©
$1C,$1C ,$1C,$1C,$1C,$1C,$1C,$1C
$1E,$1E,$1E,$1E,$1E,$1E,$1E,$1E
$00,$08,$10,$18,$20,$28,$30,$38
$40, $48, $50, $58, $60, $68, $70, $78 ©
$ 8 0 ,$ 8 8 ,$ 9 0 ,$ 9 8 ,$A0, $A8, $B0, $B8
$C0, $C8, $D0, $D8, $E0, $E8, $F0, $F8
$ 0 0 ,$08 ,$10 ,$18 ,$20 ,$28 ,$30 ,$38 Q
$00,$00,$00,$00,$00,$00,$00,$00
$00,$00,$00,$00,$00,$00,$00,$00
$00 ,$00 ,$00 ,$00 ,$00 ,$00 ,$00 ,$00
$ 0 0 ,$00 ,$00 ,$00 ,$00 ,$00 ,$00 ,$00 ©
$ 0 1 ,$ 0 1 ,$01 ,$01 ,$01 ,$01 ,$01 ,$01
$ 0 0 ,$ 2 8 ,$ 5 0 ,$ 7 8 ,$A0, $C8, $F0,$18
$ 4 0 ,$ 6 8 ,$ 9 0 ,$B8, $E0,$08 ,$30 ,$58
$ 8 0 ,$A8, $D0, $F8,$ 2 0 ,$ 48 ,$70 ,$98 u
$C0
$ 0 0 ,$ 0 0 ,$00 ,$00 ,$00 ,$00 ,$00 ,$01
$01 ,$01 ,$01 ,$01 ,$01 ,$02 ,$02 ,$02 Q
$0 2 ,$02 ,$02 ,$02 ,$03 ,$03 ,$03 ,$03
$03

No. 73 - July 1984 MICRO 29

INTERFACE CLINIC:
Communication Between Different

Computers
How to merge several computers into one efficient
system

A few columns ago I answered a letter
query about communication between
different computers. Here's another
example: I have two Radio Shack Color
Computers and one Commodore 64,
but only one printer (EPSON MX-80).
The 64K Color Computer is in use
constantly, mostly as a word processor;
the 32K (home brew) Color Computer
is usually idle. Both computer systems
(computer, disk, cassette and display)
are plugged into separate power strips.
Thus, each system is individually
controllable. In order to drive the
printer from the Color Computer using
standard software, the EPSON switch
SW2 needs to be set to 0000. For
the Commodore, using a "T he
Connection” serial interface, the
settings must be 0010. Thus, whenever
I print from the other computer, I must
move the printer power cord to the
other power strip, open the printer case
and move one switch, and connect the
other drive cable. The C-64 printer
interface has a 2K buffer, but the Color
Computer interface has no buffer. All
my w rit in g is done u s in g
ELITE’WORD, and I often must wait

by Ralph Tenny
for one file to print out before working
on another.

Obviously, things would go better if
I had a large printer buffer to capture
several pages of data and print it while I
work on another file. Figure 1 shows
how to merge my existing computers
into a single, more efficient system.
The printer and the 32K CoCo will be
powered from a third power strip which
turns on when either or both the other
systems are active. A special interface
board for the CoCo will have a serial
input from the 64K CoCo printer port
and a parallel input from the C-64
system. A separate parallel output will
drive the printer. Either computer will
be able to direct output to the printer.
If the printer is busy, the requesting
computer will have to wait as usual. I
expect that 28K of memory would be
available in the 32K CoCo after
allowing for display memory, stack and
controller program workspace. 28K of
buffer is enough for more than 15 pages
of double-spaced text, which exceeds
any need I have had so far.

Figure 1. A special network connection will allow two computers to
feed a third computer which will serve as a printer buffer.

Let me share som e of my
philosophy used in designing this
system. Three primary considerations
were involved: first, the new system
should be compatible with commercial
software running on both the 64K
CoCo and the C-64. Primarily, that
means no special printer drivers will be
written for any commercial software.
Second, the expansion will be modular.
As I complete some part of the task,
an improvement in system efficiency
will result. Finally, no internal
modifications will be made to either
the 64K CoCo or the C-64. All these
considera tions are m et by the
(apparently) clumsy plan to configure
the 32K CoCo interface to respond to
either of the other computers as if it
were a printer. That is, the input
interfaces will handshake with the
driver computers exactly as does the
existing printer interface. Software
options for straight-through printing or
formatting by the 32K CoCo will be
written.

At some future time, I may consider
e lim in a tin g th e " C o n n e c t io n ”
interface; most commercial software
uses the Commodore serial port. To
eliminate this interface would require
hours of experimentation and study,
designing an interface to convert from
Commodore serial to RS-232 format,
and there isn't time or need for that.
The C-64 claims to have an RS-232
serial port available, but this requires
a special output interface. Also, much
commercial software for the C-64 does
not support this port which is
implemented by simulating a 6850
ACIA in software. Finally, the data
transfer rate of the serial port is faster
than the RS-232 transfer rate.

I am beginning to implement this
printer buffer system as outlined above.

30 MICRO No. 73 - July 1984

Due to various time pressures, the
conversion will need to be made in
several phases. Each phase will be
reported in the column as the work is
performed. A separate problem had to
be solved first. The 32K CoCo must be
capable of booting (starting up]
unaided, so it must have an autostart
ROM in the expansion (cartridge) port.
I have an EPROM programmer for the
C-64, along with 6502 development
software which will handle the
Commodore programming required.
My 6809 development software has no
way to send 6809 code to the C-64
programmer. The temporary link
between the CoCo and the C-64 is
presented this month; probably, the
CoCo expansion interface will follow
next month.

The simplest way to transfer data
between dissimilar computers is to use
a standard data rate and interface at the
transmitting computer. If the software
and hardware at the receiving computer
is fast enough to capture the data as it
comes, no handshake is needed. For
this one-way dataflow, the CoCo/C-64
interface can be a one-transistor level
translator and inverter (Figure 2). R1
and D1 limit base drive to Q l, while
Q1 and R2 drive PB7 of the

Commodore User Port. The CoCo
printer port incorporates a BUSY*
signal, so a third wire is needed to feed
back a high level ("not busy") to the
serial in-line.

The program listing is a rudi
mentary data input program which ser
vices the interface of Figure 2. Figure 3
shows the flowchart for the program,
which assembles incoming serial data
into bytes and saves the data in
sequential locations beginning at
$2000. Since the C-64 has a timer
available, complicated bit timing is not
needed. Using a timer means that less

experimentation is needed to get the
timing correct. Instead of counting
down a software loop, the CPU polls
the CIA Interrupt Status bit to learn
when the timer has finished.

For those who need the review,
Figure 4 shows how the 8-bit serial
asychronous data is formatted. A Start
bit (TTL low level) is sent first,
followed by eight data bits which may
be either low or high. At least one Stop
Bit (high level) is sent to complete the
transmission of a single byte. Note that
Radio Shack 1.0 BASIC sends only
seven bits with one Stop bit; later

£IJ:;:V --------------
CD OF. S E R IA L IN

.P I N 2

S E R IA L OUT *

coco cannon

E l - 1 0 k ,> ■ . p i n k
— ■.y-' -...-— I

D1 2
in a i t

7 k 0,1 - NPN

P IN 1

Figure 2. Two resistors, a diode and one transistor make up a data
transmitter to send data from the Color Computer to the Commodore
64 (see text).

[•I ■!]

/Small Business
H o m e

Money-Saving
Bonus Paks

of 64 Software

(BP-1)—(disk)
to tl. text/
totl.speller/totl.label
reg. price $103 NOW $79

(BP-2)—(disk)
totl. business/
totl time manager/
totl.infomaster/totl.text
reg. price $228 NOW $159

(BP-3)—(disk)
totl.infomaster/
totl .text/totl .speller
reg. price $129 NOW $99

(BP-4)—(disk)
totl.text/
totl.speller/
research assistant
reg. price $118 NOW $89

(BP-5)—(tape)
totl. text/totl. label
reg. price $60 NOW $49

Commodore 64 and VIC 20 are trademarks ot
Commodore Business Machines Inc.

INFORMATION AND ORDER COUPON
TAPE

TOTL.TEXT 2.0 (VIC + 8K) □ 24.95
T0TL.TEXT2.5{VIC+16K) □ 34.95
TOTL.LABEL2.1 (VIC+ 16K) □ 19.95
TOTL TIMEMGR.2.1 (VIC + 8K) □ 29.95
RESEARCH ASST. 2.0 (VIC+ 8K) □ 29.95
TOTL. BUSINESS 3.0 (VIC + 24K)
TOTL.TEXT 2.6 (C-64) □ 39.95
TOTL.SPELLER 3.6 (*C64)
TOTL.LABEL 2.6 (C-64) □ 19.95
TOTL TIME MGR. 2.6 (C-64) □ 34.95
RESEARCH ASST 2.0 (C-64) □ 34.95
TOTL.INFOMASTER 3.6 (C-64)
TOTL.BUSINESS 3-6 (C-64)
TOTL.MONEYMINDER 3.6 (C-64)
BONUS PAK#____________

Check, Money Order or
C .O .D .' also accepted.
*C .O .D .orders$2 00
additional (CA residents
add 6 '/ i% sales tax)

Total .

C O D. C harges/S ales Tax .

Sh ipp ing & H andling .

A m ount Enclosed .

D ISK
□ 28.95
□ 38.95
□ 23.95
□ 33.95
□ 33.95
□ 84.95
□ 43.95
□ 34.95
□ 23.95
□ 38.95
□ 38.95
□ 49.95
□ 94.95
□ 39.95

$3.00

FOR O RD ER IN G O N L Y -C A L L O UR TO LL FREE N UM BER S
C ontinen ta l U .S . 1-800-351-1555, C a lifo rn ia 1-800-351-1551
H aw aii and A laska 415-943-7877

□ SEND M ORE INFORM ATION (no charge lo r catalog)

N a m e ___

S tre e t__

C ity _________________________ State _ Zip -
P h o n e () _

C ard i f _______

□ MC □ VISA
Exp.
D a te _____________

Tl/TL quality you can afford
1555 Third Avenue
Walnut Creek, CA 94596

SOFTWARE, INC. 415/943-7877

Figure 3. This flow chart
describes the program
listing for the Commodore
to receive data from the
Color Computer.

STflET E IG H T DATA B IT S STOP
B IT

1 3 c; & "1 B IT

Figure 4. This diagram illustrates a typical binary data byte as
transferred by the circuit of Figure 2.

versions send eight data bits and one
Stop bit.

Refer to Figure 3 and Listing 2 for
the fo llow ing discussion . NEW
initializes various locations and the
program waits for Bit 7 to go low. GET
performs a 6502 BIT test which sets the
N Flag equal to Bit 7. Until the Start bit
takes PB7 low, the BMI test forces the .
testing to continue. When the Start bit
arrives, the half-bit delay is called to be
sure the input is still low. This test
provides noise rejection only. If the line
is still low (valid start bit), INBIT calls
a one-bit delay. This allows time for
the first data bit to arrive and settle.
Next, the incoming data is captured
and a test for eight bits received is
made. The loop is executed eight
times, until SAVX becomes zero.

Listing 1

©

©

O

©

5 REM DATA TRANSFER IN BINARY
10 FOR X=49152 TO 49168
20 H0=PEEK(X)
30 PRINT#-2,CHR$(H0);
40 NEXT
42 REM CHECKSUM COMPUTATION
45 AT=l:LM=65536
50 FOR X=49152 TO 49168
60 A=PEEK(X)
70 AT=AT+A
80 IF AT> LM THEN AT=AT-LM
90 NEXT X
100 PRINT "CHECKSUM = " ,AT

Listing 2

DD00
DD01

© DD02
DD03
DD04

m DD05
DD06

THIS PROGRAM IMPLEMENTS A TTL
LEVEL SERIAL INPUT PORT ON THE
COMMODORE 64 COMPUTER WHICH WILL
INPUT AND STORE BINARY DATA

EQUATES
APORT
BPORT
ADDR
BDDR
TMRALO
TMRAHI
TMRBLO

EQU $DD00
EQU APORT+1
EQU APORT+2
EQU APORT+3
EQU APORT+4
EQU APORT+5
EQU APORT+6

CIA REGISTERS

Incoming data appears on PB7. The
LDA BPORT reads all eight bits, but Bit
7 is stripped off by shifting the bit into
the Carry Bit. Then the Carry Bit is
shifted into the location named
WORD. After eight bits have been
received, DUMP saves the assembled
data byte into the next sequential
buffer location and increments the
pointer. When the Y Index "rolls over”
from $FF to $00, the location PAGE,
which is the high order byte of the
buffer address, is incremented. This
way, the transferred data can be as large
as necessary up to $8000 (32768) bytes.
Special N ote: The listing was
assembled at $3000 to avoid destroying
the Editor package at $C000. In normal
use, this program is intended to reside
at $C000, thus providing $8000 bytes
of data buffer. Otherwise, only $1000
(4096) bytes of buffer is available with
Listing 2.

SKIP makes sure the CIA Interrupt
Status bit is clear before a full-bit delay
is called. After the delay, control
returns to FIX to test for the next Start
bit. The delay routine is called once
(enter at HLFBIT) for a one-half bit
delay, or twice (enter at FULBIT) for a
one bit delay. The timer is started and
the Timer A Interrupt Status Bit (Bit 0
in the CIA Interrupt Register) is
repeatedly polled. When this bit goes
high, the timer has timed out, so the
RTS causes normal program operation
to resume. There is a special caution
regarding use of the CIA timers. Timer
A can be operated in the free-running
mode to allow generation of arbitrary
waveforms for special purposes. The
one-shot mode, as demonstrated here,
should always be used for normal
timing. This mode selection is shown
controlled by the assignments for
TMRNIT and TMROFF.

This program is intended to be
loaded and operated under control of
HESMON 64 or another debug
monitor; the RESTORE key forces a
stop. CoCo can send data using a
simple BASIC program. Data integrity
can be verified by using another BASIC
program to checksum the data in CoCo

32 MICRO No. 73 - July 1984

and the same program to checksum the
DD07
DD0D
DD0E

data in C-64 m em ory. A m ore
"a u to m a tic ” data transfer would

TMRBHI
CIA2IR
TMRACR

EQU
EQU
EQU

APORT+7
AP0RT+$D
AP0RT+$E O :

require far more programming, so this DD0F TMRBCR EQU AP0RT+$F
s im p le r a p p ro a c h is a good
compromise. ; CONSTANTS o

The BASIC program, Listing 1, will 0009 TMRNIT EQU $09 ; TIMER ON/ONE SHOT
transfer binary data between a CoCo 0008 TMR0FF EQU $08 ; TIMER OFF
and a C-64 and checksum the data at 002C BAUDL0 EQU $2C ; TIMER VALUE FOR
both ends. Lines 10-40 send the data 0003 BAUDHI EQU $03 ; 600 BAUD ©
across to the C-64 which receives the t
data w ith the program in Listing 2.
Com pute the CoCo memory checksum
before or after sending data by typing

007C
007E
007F

; BUFFERS
SAVA EQU
SAVX EQU
SAVY EQU

$7C
$7E
$7F

©
"GOTO 45” . Lines 45 100 of the same 0080 P0INTR EQU $80 ; DATA BUFFER POINTER
program, entered into the C-64, will 0081 PAGE EQU P0INTR+1 ; BUFFER HI BYTE ©
com pute the checksum after the 0082 WORD EQU P0INTR+2 ; INPUT SCRATCH BYTE
transm ission . N ote th a t line 10
sp ec ifie s ad d resses 49152-49168 3000 0RG $3000
($C000-$C010J, which happens to be

3000 A9 08
; MAIN PROGRAf<

#TMR0FF ;
o

the first 16 bytes of the expansion area NEW LDA INSURE TIMER OFF
(Disk BASIC for CoCo if you have a 3002 8D 0E DD STA TMRACR
disk]. Obviously, this could have been
any set of locations, as long as the C-64

3005 A9 00
3007 85 80
3009 A8

LDA
STA
TAY

#$00 ;
P0INTR ;

INIT DATA POINTER
LOW BYTE
AND INDEX POINTER

©

buffer area is long enough. Note also 300A A9 2C LDA #BAUDL0 ; SET TIMER FOR
that line 50 m ust specify the same 300C 8D 04 DD STA TMRAL0 ; HALF-BIT TIME o
addresses as line 10. The C-64 version 300F A9 03 LDA #BAUDHI
m ust use the target addresses set up by 3011 8D 05 DD STA TMRAHI
the C-64 receive program. 3014 A9 20 LDA #$20 ; INIT DATA POINTER oI re c o m m e n d th e fo llo w in g 3016 85 81 STA PAGE ; HI BYTE
sequence for data transfers using these 3018 A9 08 FIX LDA #08 ; INIT BIT COUNTER
programs:

1. Connect and test the interface.
301A 85 7E
301C 78

STA
SEI

SAVX
i KILL C64 INTERRUPTS o

2. If data is to be transferred for 301D A9 00
301F 85 82

LDA
STA

#00 ;
WORD ;

INIT INPUT
SCRATCH PAD

programming in an EPROM, use
HESMON 64 to prepare the buffer area: ; INPUT LOOP ©

F2000 2FFF FF 3021 2C 01 DD GET BIT BPORT ; TEST FOR START BIT
This command fills 4096 locations (a 3024 30 FB BMI GET ; WAIT FOR IT
full 2732 EPROM) with $FF. Thus, if 3026 20 53 30 JSR HLFBIT ; FOUND IT

0the code transferred is smaller than 3029 2C 01 DD BIT BPORT ; WAIT ONE-HALF BIT
4096 bytes, unused EPROM locations 302C D0 F3 BNE GET ; FALSE START BIT?
will remain undisturbed. 302E 20 50 30 INBIT JSR FULBIT SAMPLE NEXT BIT

3. Set up the CoCo by entering the 3031 AD 01 DD LDA BPORT ; READ PORT or / O
BASIC p ro g ra m . C o m p u te th e 3034 0A

3035 66 82
ASL
R0R

A ;
WORD ;

GET INPUT DATA BIT
ROTATE INTO BUFFERchecksum now or later. 3037 C6 7E DEC SAVX ; COUNT BIT AND

4. Start the receiving program in the 3039 F0 03 BEQ DUMP ; TEST FOR LAS ©
C-64 (it will wait on data if the 303B 4C 2E 30 JMP INBIT ; GET MORE
interface is connected) using: 303E A5 82 DUMP LDA WORD ; SAVE ASSEMBLED

G3000 3040 91 80 STA (P0INTR), Y ; DATA ©
5. Type RUN on CoCo. 3042 C8 INY t BUMP POINTER
6. When CoCo prints “ BREAK IN 3043 D0 02 BNE SKIP ; PAGE BOUNDARY?

40” , hit RESTORE on the C-64. 3045 E6 81 INC PAGE ; INCREMENT PAGE BIT
7. Save the data using th is 3047 AD 0D DD SKIP LDA CIA2IR ; CLEAR STATUS BIT ©

HESMON command: (disk assumed)
S ''filenam e” 08 2000 2FFF

304A 20 50 30
304D 4C 18 30

JSR
JMP

FULBIT ;
FIX ;

WAIT FOR STOP BIT
AND CONTINUE

8. Return to BASIC (C-64) w ith the ; POLLED TIMER DELAY ©
HESMON command XC; enter the 3050 20 53 30 FULBIT JSR HLFBIT ; TWICE FOR FULL BIT
checksum program and compute the 3053 A9 09 HLFBIT LDA #TMRNIT ; START TIMER
c h e c k su m . In case o th e r th a n 3055 8D 0E DD STA TMRACR ©
HESMON is used, it may be necessary 3058 AD 0D DD TEST LDA CIA2IR ; WAIT FOR
to load the data from disk w ith an offset 305B 29 01 AND #$01 ; STATUS BIT
to avoid conflicts w ith BASIC. If the 305D F0 F9 BEQ TEST
checksum is OK, you are free to 305F 60 RTS y RETURN ©

program the EPROM. 3060 END
JMCRO

No. 73 - July 1984 MICRO 33

HILISTER - A Study and
Teaching Aid

(Part 1)
♦
♦
♦
♦

-------ZJB i= ^ 3 E H ^ ^ ^ 3 E H ^ ^ ^ = in r = ^ ^ = im r = = i mi---------- in

Move easily within your programs and highlight
parts of text or listings to add emphasis, drama or
clarity

m =imi = irn n n i =in i =imi i n i =nmi i n i gn

by J. M orris Prosser

HiLister is a machine language program
which may be called from either
Applesoft or the monitor to invert one
line at a time on the screen display,
thus "highlighting" that line. In
addition, an Applesoft program, a block
of disassembled memory locations, a
disk catalog (either drive], a memory
dump (in both hex and ASCII), or
almost anything else may be listed to
the screen, after which one can jump to
the beginning or end of the listing,
move forward or backward by screen
"pages” , scroll either up or down, or
step up or down one line at a time.
Lines may be highlighted in this mode
also.

HiLister began as a simple line
inverter, to highlight lines on the
screen while teaching a beginner's
programming class. The instructor sat
at the keyboard and used a separate
monitor to show the class what was
happening. In order to point out a
particular line for discussion, he had to
get up and point to it on the monitor.
HiLister made it possible for him to
remain seated, pointing out the line by
causing it to be printed in inverse
characters.

At that point, it was possible to
highlight only those lines already on
the screen display, so I added a list
function to allow an entire Applesoft
program to be examined with the
highlighter. When the list function is
in effect, if the highlight is moved to
the bottom of the screen and an
attempt is made to move it further, the
screen scrolls up one line, and the
bottom line is again highlighted. A
similar action occurs at the top of the
screen. The additional functions of
jumping to beginning or end, paging,
scrolling, and stepping are icing on the
cake.

Once the Applesoft list function
was in operation, I found that the
program was very helpful for studying
program listings at any time, rather
than being useful only in a teaching
situation. It was at this point that I
decided to add a list function for
machine language disassembly listings.

It also appeared that some other
functions might be useful, so I added a
command to dump a block of memory
to the screen in hex and ASCII and
another to allow the listing of long
catalogs from either drive. The final

step was to add a method of listing
other things I had perhaps overlooked.

HiLister is initialized by "BRUN
HILISTER” or by "BLOAD HILISTER"
and "CALL 3276 8". The initialization
consists of setting the ampersand (&.)
and ctrl-Y vectors. The program is then
accessed by entering ctrl-Y from the
monitor (for the highlighter function
only), or "& ” from Applesoft (for all
functions). “ &LIST" causes the
Applesoft program in memory to be
listed in its entirety to both the screen
and to a buffer area used by HiLister for
the list function. Commas or hyphens
and beginning and ending addresses
may be used as in the standard
Applesoft LIST command to obtain a
partial listing.

To get a listing of a machine
lan g u ag e p rog ram or o th e r
disassem bled m achine code, the
command is an ampersand followed by
a dollar sign and the start address (in
hex) of the memory to be disassembled.
Thus, "&$8000" would print 256 lines
of disassembled code starting at $8000
(a partial listing of HiLister, for
example). "&.$8000L" would produce
the same result. Addition of a plus sign

34 MICRO No. 73 ■ July 1984

after the address (for example, &$8000)
causes 512 lines of disassembled code
to be listed. Note that "&$8000L"
would produce only 256 lines of code,
since the program looks for only one
character following the address.

To obtain a memory dump, the
command is "& $" followed by the
range of memory to be dumped. For
example, "&$8000.84FF” would dump
the range $8000 to $84FF, just as in the
normal monitor command.

Disk catalogs are listed by using the
command "$C” for the default drive,
or "&C1” or "&C2” to specify the
drive.

To list anything else to the program
buffer, use " &B" to initialize the
output detour and the buffer, then list
or print whatever is desired, then enter
the HiLister program with " &E".

While the program is listing to the
screen and buffer, ctrl-S and ctrl-C may
be used to pause and end the listing,
respectively, just as with the normal
Applesoft LIST command. Note,
however, that ctrl-C is not effective in
a catalog listing.

If a program is too long to be
completely listed to the buffer, the bell
sounds and a message is displayed
offering the options of using the part of
the program already listed or leaving
the HiLister program and re-entering it
with only an elected part of the
program to be listed. The buffer
normally starts at $4000, so an
Applesoft program of more than 57
sectors would overwrite it. The
Applesoft program length is checked by
HiLister, however, and if necessary the
start of the buffer is moved up in
memory. In this event, of course, the
buffer size is decreased and it will not
hold as long a listing.

Applesoft programs of this length or
longer may be too long for complete
listing. For very long programs it is
better to load the program, delete those
lines not required for study, and then
invoke the list function of HiLister.
This will provide for a larger buffer and
make the maximum number of lines
available for study. Note that an
Applesoft program longer than 120
sectors will overwrite the HiLister
program itself. In this case it is possible
to load the Applesoft program, delete
part of it, then BRUN HILISTER.

The assembly listing for HiLister is
quite long and is liberally commented,
so only a brief description of how the
program works will be provided here
(Listing 1).

Upon first running the program, the
ampersand and ctrl-Y vectors are set up
and control is returned to BASIC. Upon
entry to the main program, the program
determines whether the highlighter
alone is requested, or one of the other
options is desired. If a listing is
required, the program sets the output
vector (subroutine OUTSET) to cause
all output to pass through the program,
so that it may be listed to the buffer as
well as to the screen. It also fills the
buffer with carriage returns so there
will be no extraneous material at the
end of the listing. If an Applesoft
listing, the program goes to a portion of
code which replaces the standard
A pplesoft "L IST " rou tine. The
standard routine could not be used,
since it does not normally return to the
caller and, in addition, some special
formatting was required.

If a disassembly listing is requested,
the program determines the start
address for the listing, then checks to
see whether 256 or 512 lines should be
listed. This is done in subroutine
"MEMLST," which also checks to see
whether "DEF" is part of the address
entered. The reason this is needed is
that Applesoft would interpret this as

the beginning of a "DEF FN"
command, and so would replace it with
the token for "DEF” ($B8J. If this
happens, the "DEF” address must be
restored so the listing will start at the
correct address. While this situation
will seldom arise, I thought it should
be covered.

MEMLST also checks to determine
if a memory dump is desired rather
than a disassembly listing. It does this
by looking for a period between
addresses.

When all is well, if a disassembly
listing is requested, the program goes to
"MONLIST,” which replaces the
monitor "LIST2” subroutine. It is
called twice if 512 lines are to be listed.

If a memory dump is required, the
program jumps to "DUMP," which
performs a function similar to the
"XAM” function in the monitor, with
the added feature that the hex code is
converted to ASCII and shown at the
same time. Control (non-printing)
characters are shown as blanks.

If a catalog listing has been
requested, the program jumps to
"CTLG,” which first removes the
pause from the DOS CATALOG
routine, then calls it. When the catalog

Listing 1

0800 * HILISTER1 (REV 04/16/84) o
0800 #

0800 # Written by

0800 #
0800 * J. Morris Prosser o
0800 #
0006 LINE EQU $06 LINE NUMBER FOR HIGHLIGHTER

0007 TEMPY EQU $07 TEMPORARY STORAGE FOR Y REGISTER

0009 TEMPX EQU $09 TEMPORARY STORAGE FOR X REGISTER

0019 FLAG EQU $19 FLAG FOR USE BY HIGHLIGHTER

001A LSTFLG EQU $1A A/S LIST FLAG

001B COUNT EQU $1B COUNTER O
001C PLUSFLC EQU $1C FLAG FOR EXTENDED MONITOR LIST

0010 CATFLG EQU $1D FLAG FOR CATALOG LISTING

001E DIRFLG EQU $1E FLAG FOR STEP DIRECTION

0024 CH EQU $24 CURSOR HORIZONTAL POSITION o
0025 CV EQU $25 CURSOR VERTICAL POSITION

0031 MODE EQU $31 MODE OF MONITOR COMMAND

0036 CSWL EQU $36 CHARACTER OUTPUT VECTOR o
003A PCL EQU $3A PROGRAM COUNTER

003 C AIL EQU $3C GENERAL PURPOSE COUNTER

003E A2L EQU $3E GENERAL PURPOSE COUNTER

0040 A3L EQU $40 GENERAL PURPOSE COUNTER o
0042 A4L EQU $42 GENERAL PURPOSE COUNTER

0050 LINNUM EQU $50 GENERAL PURPOSE 16-BIT REGISTER

0085 F0RPNT EQU $85 GENERAL POINTER A
009B L0WTR EQU $9B GENERAL PURPOSE REGISTER

009D DSCTMP EQU $9D TEMP STRING DESCRIPTOR

0081 CHRGET EQU $B1 GET CHAR.,INCREMENT POINTER

00B7 CHRG0T EQU $B7 GET CHAR., NO INCREMENT ©
00F9 MEMFLG EQU $F9 MONITOR LIST FLAG

00FA BUFST EQU $FA BEGINNING OF LIST BUFFER

No. 73 - July 1984 MICRO 35

Listing 1 (continued)

00FC SCRST EQU $FC
Q 00FE LSTEND EQU $FE

0200 IN = $200
03D0 BASIC = $3D0
03EA TELLDOS = $3EA

O 0 3 F 5 AMP = $3F5
03F8 CTRLY = $3F8

4000 BUFLE = $4000

C 000 KBD = $C000

C010 KBDSTRB = $C010

D61A FNDLIN = $D61A

DA0C LINGET = $DA0C

© D A F B CRDO = $DAFB

DB5C OUTDO = $DB5C

DEC9 SYNERR = $DEC9
ED24 LINPRT = $ED24

© F8D0 INSTDSP = $F8D0

F940 PRNTYX = $F940

F953 PCADJ = $F953
q FBC1 BASCALC = $FBC1

FC22 VTAB = $FC22

FC58 HOME = $FC58

FC9C CLREOL $FC9C
© F C B A NXTA1 = $FCBA

FDDA PRBYTE = $FDDA

FDED 63 COUT = $FDED

© FDF0 C0UT1 = $FDF0

FE2C MOVE = $FE2C
FF3A BELL = $FF3A

© F F A 7 GETNUM = $FFA7

FFC7
8000

ZMODE

ORG

$FFC7

$8000
8000 NOG

© 8000 *
8000 * Set ampersand and
8000 *

- 8000 A9

8002 8D
4C

F5 03

START LDA

STA

#$4C
AMP

8005 8D F8 03 STA CTRLY

8008 A9 80 LDA /BEGIN

Q 800A 8D F6 03 STA AMP+1

800D 8D F9 03 STA CTRLY+1

8010 A9 IB LDA #BEGIN

8012 8D F7.03 STA AMP+2

© 8 0 1 5 8D FA 03 STA CTRLY+2

o-J-

COH00 D0 03 JMP BASIC

801B A2 00 BEGIN LDX m
_ 8 0 1 D 86

801F 86

ID STX CATFLG

1A STX LSTFLG

8021 86 F9 STX MEMFLG

8023 86 1C STX PLUSFLG

© 8 0 2 5 86 IE STX DIRFLG

8027 C9 00 HILITER CMP m
8029 F0 03 BFL HILITERl

802B 4C CF 80 JMP LISTER

© 8 0 2 E *

802E A2 00 HILITERl LDX #0
8030 86 19 STX FLAG

n 8032 86 06 STX LINE

8034 F0 5B BFL NXTLN

8036 2C 00 C0 KEYCHK BIT KBD

8039 10 FB BPL KEYCHK

© 8 0 3 B AD 00 C0 LDA KBD

803E 2C 10 C0 BIT KBDSTRB

00 -r
-

o s
O 9B CMP #$9B

8043 D0 05 BTR NOTESC

® 8045 85 19 STA FLAG

8047 4C 91 80 JMP NXTLN

804A C9 88 NOTESC CMP #$88

BEGINNING OF SCREEN BUFFER
END OF LISTING

Input buffer

Soft entry to BASIC

DOS routine to get change in
Ampersand vector

Control-Y vector
Buffer low end

Keyboard input address
Keyboard strobe

Find mem. loc. of line in LINNUM

Get line no. from input buffer
Print carriage return

Print character in accumulator

Syntax error routine
Print line number

Print disassembled instruction

Print Y and X registers

Adjust program counter

Calc, start addr. of screen line
Set cursor vertical position
Clear screen - home cursor
Clear to end of line

Increment pointer A1L,A1H

Print accumulator as hex

byte
Print to output device

Print to screen

Move memory block
Sound bell

Get hex bytes from input buffer
Set MODE for GETNUM

.-Y vectors

;Clear flags

;Other command

;No - HILITER

;Set FLAG and LINE to zero

;Branch always

;Check keyboard
;Key not pressed

;Key pressed - get it
;Reset keyboard strobe

;Is it 'ESC'
;No - branch

;Yes - set FLAG
;Remove highlight and exit

;Is it left arrow

listing is complete, the program
restores the pause to DOS.

When listing is completed, the
program pages back one screenful and
sets the address at that point as the
start of the screen buffer and as the
address of the end of the listing. It then
reprints this screen, sounds the bell,
and prints a "LISTING COMPLETED”
message.

The operation of the jumps to
beginning and end of the listing is fairly
obvious - simply a matter of setting the
start of the screen buffer to the start of
the listing buffer or the end address of
the listing, as mentioned above.

The paging and scrolling are based
on checking the buffer for the next
previous or next following carriage
return. For paging, 23 returns are
counted before the next screen is
printed, while for scrolling the screen is
reprinted after each return is found, and
then the next one is searched for.

Stepping one line at a time is
accomplished by use of the space bar.
The program checks to see whether the
last movement called for was forward
or backward (by looking at DIRFLG),
then calls UPDO or DOWNDO, as
appropriate. Default is UPDO, to scroll
forward one line.

C o m m an d s a v a ila b le for
manipulating the listing are:

B - jump to the beginning of the
listing

E - jump to the end of the listing

+ or ; - page forward (previous
bottom line becomes top line)

- or = - page back (previous top line
becomes bottom line)

Right arrow - scroll up (stops on any
keypress)

Left arrow - scroll down (stops on any
keypress)

Space bar - step forward or backward
one line.

& - calls highlighter

ESC - returns to BASIC

If the highlighter was requested, the
top line of the screen is changed to the
inverse of what it was; that is, normal
characters become inverse, inverse
characters become norm al, and

36 MICRO No. 73 ■ July 1984

flashing characters are unchanged. The
program then looks for keyboard input.
If a right arrow is pressed, the top line is
restored and the next line is inverted.
Further presses of the right arrow key
cause the highlighting line to move on
down the screen in this manner. The
left arrow works the same way, except
that it moves the "highlight” up the
screen.

If the highlighter was called from
any list routine, then when the
highlighted line is at the bottom of the
screen, further right arrows make the
screen scroll up one line. Left arrows
work in an analogous fashion when the
highlighted line is at the top of the
screen. The "ESC” key causes the
currently highlighted line to be
restored and the program returns to the
caller.

One problem occurs with the
highlighter if your listing includes
lower case letters, in that the Apple II
cannot show lower case letters in
inverse. I thought the best thing to do
in this event was to convert the lower
case to upper case before highlighting.
Naturally, when the highlighting is
removed the material remains in all
upper case. If the list function is in
effect, the lower case will be restored as
soon as the screen is reprinted for any
reason, such as scrolling, paging, or
stepping. Another way of handling this
situation would be to show all
characters except lower case in inverse,
leaving the lower case characters
normal. If you would like to try this
option, get into the monitor with
CALL-151, then type "809C:B0 16 EA
EA'' and press RETURN - after having
BLOADed HILISTER, of course.

W hile the h igh ligh ter is in
operation, all keys except "ESC” and
the right and left arrows are ignored.

The assembly listing for the
highlighter portion of the program is
included here as Listing 1. This is a
stand-alone program as shown, so it
can be put to use immediately after
keying it in. It should be saved as
HiListerl. If you are entering the code
w ithout using an assembler, the
command is:
BSAVE HILISTER 1, A$8000, L$D0.

Part 2 of this article will present a
listing of the remainder of the program,
and will include instructions for adding
it on. Some of the code in the first part
of the listing appears redundant, but it
is necessary for interfacing to the other
parts of the program.

JUCftO

Listing 1 (continued)

804C D0 IF BTR NOTLFT ;No - branch
804E A6 06 LDX LINE ;Yes - get LINE

8050 CA DEX ;and decrement it

8051 10 14 BPL LFT1 ;Not top of screen

8053 E8 INX ;Top of screen
8054 A5 1A LDA LSTFLG ;List in effect
8056 05 F9 ORA MEMFLG
8058 05 ID ORA CATFLG
805A F0 0B BFL LFT1 i No - branch
805C 85 19 STA F U G ;Yes

805E 20 91 80 JSR NXTLN ;Restore top line

8061 20 83 83 JSR DOWNDO ;Scroll down one line

8064 4C 91 80 JMP NXTLN ;Invert it

8067 86 09 LFT1 STX TEMPX

8069 A2 00 LDX #0
806B F0 23 BFL INVERT ;Put in highlight
806D C9 95 NOTLFT CMP #$95 ; Is it right arrow
806F D0 C5 BTR KEYCHK ;No - get next keypress

8071 A6 06 LDX LINE ;Get line number

8073 E8 INX ;and increment it
8074 E0 18 CPX #24 ;Bottom line

8076 D0 14 BTR RT1 ;No - branch
8078 CA DEX ;Yes

8079 A5 1A LDA LSTFLG ;List in effect

807B 05 F9 ORA MEMFLG
807D 05 ID ORA CATFLG

807F F0 0B BFL RT1 ;No - branch

8081 85 19 STA F U G ;Yes

8083 20 91 80 JSR NXTLN ;Restore line

8086 20 65 83 JSR UPDO ;Scroll up one line

8089 4C 91 80 JMP NXTLN ;Invert it

808C 86 09 RT1 STX TEMPX ;Save line number

808E A2 00 LDX #0

8090 CA INVERT DEX

8091 A5 06 NXTLN LDA LINE ;Get line number

8093 20 Cl FB JSR BASCALC ;Find address of left end

8096 A0 27 LDY #39 ;Start at end of line

8098 B1 28 GETCH LDA ($28),Y ;Get character

809A C9 E0 CMP #$E0 ;Is it lower case

809C 90 02 BLT NOTLC ;No - check further

809E 29 DF AND #$DF ;Yes - make it upper case

80A0 C9 A0 NOTLC CMP #$A0 ;Is it normal

80A2 90 04 BLT INV ;No - check further

80A4 29 3F AND #$3F ;Yes - invert it

80A6 B0 0C BGE DISP jand display it

80A8 C9 40 INV CMP #$40 ;Is it flashing

80 AA B0 0A BGE NXTCH ;Yes - don't change it

80AC 69 80 ADC #$80 ;Must be inverse - make it normal

80 AE C9 A0 CMP #$A0 ;Normal now

80B0 B0 02 BGE DISP ;Yes - display it

80B2 69 40 ADC #$40 ;No - make it so

80B4 91 28 DISP STA ($28),Y ;And print it

80B6 88 NXTCH DEY ;Get next character

80B7 10 DF BPL GETCH ;Not done yet

80B9 A5 19 LDA F U G ;Is F U G set

80BB F0 05 BFL CONT ;No - check X

80BD A2 00 LDX #0 ;Yes - clear it

80BF 86 19 STX F U G

80C1 60 RTS ;Done

80C2 8A CONT TXA ;X=0

80C3 D0 03 BTR CONTI ;No - branch

80C5 4C 36 80 JMP KEYCHK ;Yes - get next command

80C8 A5 09 CONTI LDA TEMPX ;Invert next line

80CA 85 06 STA LINE

80CC E8 INX

80CD F0 C2 BFL NXTLN ;Branch always

80CF *

80CF D8 LISTER RTS

80D0 END

©

©

©

©

©

No. 73 ■ July 1984 MICRO 37

Super Simple Numeric Sort
by Robert L. M artin WB2KTG

Arrange a list in numerical order without a user sup
plied sorting program

Everyone, at some time, has had to
take a list of numbers and arrange them
in numerical order. The effort involved
in accomplishing this task can, of
course, be minimized by the use of a
computer and a sorting program.
Explained in this article is a sorting
technique which doesn't require a user
supplied program, but instead uses a
bu ilt-in BASIC feature-autom atic
program statement sequencing.

All BASIC interpreters will allow
non-sequential program statem ent
entry. That is, the line numbers of
statements need not be entered in any
specific order. The BASIC interpreter
will automatically LIST them in
ascending order.

To arrange a list of numbers in
ascending order, input each number
followed by a period, asterisk, or some
other non-numeric character. For non
integer values the decimal point will
serve as the non-numeric character.

The Basic interpreter assumes that
any digits input preceding a non
numeric character are line numbers.
All alphanumeric characters entered
following the first non-num eric
character are assumed to be BASIC
program statements. As long as no
attempt is made to RUN the program,
no error message will be given.

The example shown is the actual
printed output from my Sharp PC-1500
p o ck e t c o m p u te r and CE-150
printer/plotter.

The use of this technique was
discovered at work when I was given a

list of 140 repair orders to sequence.
Each repair order number was four
digits long. Fortunately, I had my
PC-1500 with me, along with a bit of
imagination. I hope this example of

using a computer's "hidden” talents
will result in other non-standard
techniques being developed to save the
time and patience of the human
interface.

M I C R O

Sample Printout From Sharp PC-
1500/CE-150

29 29.
36.5 36.5
414 414.
13.2 13.2
5 5.
1019 1019.
7.25987 7.25987

a)List of Numbers bJNumbers as Input to the Computer
(note Decimal Points).

5
7 .25987

13 .2
29
36 .5

414
1019

c) Output of Computer in Response to a
"LLIST" command.

38 MICRO No. 73 - July 1984

FLOPPY DISKS SALE *$1.19 ea
Economy Model or Cadillac Quality

lOfrtresasar We have the lowest prices! iQR/tessasr
•ECONOMY DISKS
Good quality 5Vk " single sided double density with hub rings.

Bulk Pac 100 Qty. $1.19 ea. Total Price $119.00
10 Qty. 1.39 ea. Total Price 13.90

CADILLAC QUALITY
• Each disk certified • Free replacement lifetime warranty • Automatic dual tr over

professionals because they can rely
Each Loran disk is 100% certified (an

IME WARRANTY. With Loran
fter hours spent in program

For those who want cadillac quality we have the Loran Floppy Disk. Uj>j
on Loran Disks to store important data and programs without fear o
exclusive process) plus each disk carries an exclusiv&FREE REPLA
disks you can have the peace of mind wijhout the
development.
100% CERTIFICATION TEST
Some floppy disk manufacturers only sample test on a batch basis the disks they self, and then claim they are
certified. Each Loran disk is individually checked so you will never experience data or program loss during your
lifetime!
FREE REPLACEMENT LIFETIME WARRANTY
We are so sure of Loran Disks that we give you a free replacement warranty against failure to perform due to faul
ty materials or workmanship for as long as you own your Loran disk
AUTOMATIC DUST REMOVER
Just like a record needle, disk d'ive heads must travel hundreds of miles over disk surfaces Unlike other floppy
disks the Loran smooth surface finish saves disk drive head wear during the life of the disk. (A rough surface will
grind your disk drive head like sandpaper) The lint free automatic CLEANING LINER makes sure the disk-killers
(dust & dirt) are being constantly c leaned while the disk is being operated PLUS the Loran Disk has the highest
probability rate of any other disk in the industry for storing and retaining data without loss for the life of the disk.

Loran is definitely the Cadillac disk in the world
Just to prove it even further, we are offering these super INTRODUCTORY PRICES

List $4.99 ea. INTRODUCTORY SALE PRICE $2.99 ea. (Box of 10 only) Total price $29.90
$3 33 ea. (3 quantity) Total price $9.99

All disks come with hub rings and sleeves in an attractive package

DISK DRIVE CLI s19.95
Everyone needs a disk drive doctor

FACTS
• 60% of all drive downtime is directly related to poorly maintained drives.
• Drives should be cleaned each week regardless of use.
• Drives are sensitive to smoke, dust and all micro particles.
• Systematic operator performed maintenance is the best way of ensuring error free use of your computer]

system.
The Cheetah disk drive-cleaner can be used with single or double sided S'W disk drives. The Cheetah is anj
easy to use fast method of maintaining efficient floppy diskette drive operation.
The Cheetah cleaner comes with 2 disks and is packed in a protective plastic folder to prevent contamination. |
List $29.95/Sale $19.95

I Add $10.00 for shipping, handling and Insurance. Illinois residents 1
| please add 6% tax. Add $20.00 for CANADA, PUERTO RICO, HAWAII | j orders. WE DO NOT EXPORT TO OTHER COUNTRIES. j
I Enclose Cashiers Check, Money Order or Personal Check. Allow 14 |
| days for delivery, 2 to 7 days for phone orders, 1 day express mail! |
| Canada orders must be in U.S. dollars. Visa - MasterCard • C O D. |

P R O T E C T O
iW£ lOV£ OU« CU$ TOMfBSlENTERPRIZES

BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382-5244 to ordsr

EXECUTIVE LETTER QUALITY

DAISY WHEEL PRINTER SALE $37900
COMSTAR 13”

computer printer

COMSTAR 13” “ DAISY WHEEL" POWER TYPE
PRINTER is typewriter friendly. It uses a simple
drop in cassette ribbon. Just turn on the COM
STAR 13” for Crip executive quality cor
respondence at 18 CPS with a daisy wheel that
prints 96 power type flawless characters, bi
directional. Designed for personal and business
applications. COMSTAR 13” carriage accepts
paper from letter to legal size, continuous com
puter paper or single sheets, you can set right
and left margins, vertical and horizontal tabs.
(Serial and parallel interface). LIST PRICE ‘ 59900
SALE PRICE 537900

O OLYMPIA “ DAISY WHEEL” COMBINATION

PRINTER/TYPEWRITER SALE $48900
THE o Olympia c o m p u te r p r in t e r
ELECTRONIC TYPEWRITER is the ultimate for
Home, Office, and Word Processing. You get the
best Electronic Typewriter made and used by
the world’s largest corporations (better than IBM
Selectric) p lus a Superb Executive Cor
respondence Computer Printer!! (Two machines
in one!) Just flick the switch for the option you
want to use. The extra large carriage allows
1414” printer paper width. It has cassette ribbon
lift o ff correction. Baud rates, Jumper selectable
75 through 19,200 (parallel interface)
LIST ‘ 799°° SALE s48900

o Olympia (w o r ld ’s f in e s t)

• 15 DAY FREE TRIAL — 90 DAY FREE REPLACEMENT GUARANTEE

• —— - — —---
I Add $17.50 for shipping and handling!!

| Enclose Cashiers Check, Money Order or Personal Check. Allow
j 14 days for delivery, 2 to 7 days for phone orders, 1 day express
| mail! Canada orders must be in U.S. dollars. VISA — MASTER
I CARD ACCEPTED. We ship C.O.D.

PROTECTO
ENTERPRIZES (W E LO V E O U B C U S T O M E R S]

BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382-5244 to order

40 MICRO No. 73 - July 1984

• SANYO MONITOR SALE!!

s6900
9" Data Monitor

80 Columns x 24 lines
Green text display
Easy to read - no eye strain
Up front brightness control
High resolution graphics
Quick start - no preheating
Regulated power supply
Attractive metal cabinet
UL and FCC approved

15 Day Free Trial - 90 Day Immediate Replacement Warranty

9" Screen - Green Text Display $ 69.00
12" Screen - Green Text Display (anti-reflective screen) $ 99.00
12" Screen - Amber Text Display (anti-reflective screen) ̂ $^39^00
12" Screen-Super 1000 Line Amber Text Display f $129.00
14" Screen - Color Monitor (national brand) \ $249.

Display Monitors From Sanyo
With the need for computing power growing every day, Sanyo has
stepped in to meet the demand with a whole new line of low cost, high
quality data monitors. Designed for commercial and personal com
puter use. All models come with an array of features, including up
front brightness and contrast controls. The capacity 5 x 7 dot
characters as the input is 24 lines of characters with up to
80 characters per line.
Equally important, all are built with Sanyo’s commitment
to technological excellence. In the world of Audio/Video, Sanyo is
synonymous with reliability and performance. And Sanyo quality is
reflected in our reputation. Unlike some suppliers, Sanyo designs,
manufactures and tests virtually all the parts that go into our products,
from cameras to stereos. That’s an assurance not everybody can
give you!

SANYO
Official Video Products

of the Los Angeles 1984 Olympics

• LOWEST PRICES • 15 DAY FREE TRIAL • 90 DAY FREE REPLACEMENT WARRANTY
• BEST SERVICE IN U.S.A. • ONE DAY EXPRESS MAIL • OVER 500 PROGRAMS • FREE CATALOGS

t Add *10.00 for shipping, handling and insurance. Illinois residents V
I please add 6% tax. Add $20.00 for CANADA, PUERTO RICO, HAWAII |
j orders. WE DO NOT EXPORT TO OTHER COUNTRIES. j
I Enclose Cashiers Check, Money Order or Personal Check. A llow 14 |
| days for delivery, 2 to 7 days for phone orders, 1 day express m ail! I
| Canada orders must be in U.S. dollars. Visa - MasterCard - C.O.O. |

PROTECTO
ENTERPRIZES (W E LO VE O U R C U S T O M ER S)

BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382-5244 to order

A e a tu n e

CMPRSS —
Improved A pplesoft
Compression Program

Compress large programs easily and retain com
ments without overflowing Called Line Number
Table

by Ian ft. Humphreys

3 0 E

© ;**APPLESOFT SUBROUTINES**

D61A FNDLIN EQU $D6lA ;Find start of

0800 ;givn Applesft In
© D697 STXTPT EQU $D697 ;Init TXTPTR for

0800 ;pass of program

DA0C LINGET EQU $DA0C ;Convrt dec to hex

A DAFB CRDO EQU $DAFB ;Output carriage
V

0800 ;return to screen

DB3A STROUT EQU $DB3A ;Output a text

0800 ;string to screen

© ED24 LINPRT EQU $ED24 ;Print a hex line

0800 ;# in decimal

00B7 CHRGOT EQU $00B7 ;Get curr byte

0800 ;w/o inc TXTPTR
o 00B1 CHRGET EQU $00B1 ;Inc TXTPTR and

0800 ;get next byte

0
0 ;**ZERO PAGE LOCATIONS**

0007 MAXX EQU $0007 ;Loop Ctrl for

0800 ;transfLINBUF to new prog
© 0005 OLDBEG EQU $0005 ;Ptr to last EOS

0800 ;in orig prog

n 004 LASTX EQU $0004 ;Ptr to last EOS

A 0800 ;in LINBUF
V 0003 NEWPTR+1 EQU $0003

0002 NEWPTR EQU $0002 ;Ptr to curr posn

0800 ;in compr prog

© 0001 IFFLAG EQU $0001 ;Flag set when IF

0800 ; found in line

0000 ERRORS EQU $0000 ;Flag for errors

0800 ;during PASS #1
© 000A LSTEOS EQU $000A ;Last EOS token

0800 ;$00 or $FF

0009 OLDEOP+1 EQU $0009

© 0008 OLDEOP EQU $0008 ;Value of EPROG
xir

0800

3 B [=

Editor's N ote: This program im proves on
programs previously done by: Barton M.
Bauers (MICRO 52:89); Petei J.G. Meyer
(MICRO 55:26).

3 B E□ H E S H E

Requirements:
Apple II or Apple II Plus; 48K
and Applesoft BASIC in ROM

42 MICRO

I had just finished writing a large,

well-commented Applesoft program

which was part of a major System I was

working on. Unfortunately, w h e n I

c a m e to test it, there was not enough

r o o m for its several large arrays and

various string variables, and the

program w o u l d not run. Coinci

dentally, on that same day, I purchased

the September 1982 edition of M I C R O

magazine and was excited to see that it

contained an article by Barton M .

Bauers, giving a source listing of a

m a c h i n e language routine w h i c h

compressed Applesoft programs. I

eagerly hurried home, read the article

and proceeded to key it into m y Apple.

I tested it on several small programs

first and found that it seemed to wor k

as described, so I set about running

C O M P R E S S on m y large program.

M u c h to m y dismay, C O M P R E S S

aborted with E R R O R #3 which meant

that the Called Line N u m b e r Table had

overflowed and so I couldn’t use it! Not

only does Barton Bauers' program

No. 73 ■ July 198-

;at beg of PASS#2

0051 LINNUM+1 EQU $0051

0050 LINNUM EQU $0050 ;Line num retumd O :
impose a limit of 256 called line 0800 ;by LINGET
numbers, but it doesn't even check for 0067 TXTTAB EQU $0067 ;Ptr to start of

duplicates, so for anything but a very 0800 Applesoft prog ■

small program the table soon fills up 006E EARS+1 EQU $006E
Viiir

and overflows. O n e of the major 006D EARS EQU $006D ;Ptr to end of

reasons for wanting to compress the

A p p l e s o f t c o d e c a n n o t be

0800
006C
006B

ARS+1

ARS

EQU $0060

EQU $006B

;array space

o
;Ptr to start of

accommodatgjdi--AffCT, M r ^ —Hauers' 0800 array space
program" contains an error. Applesoft 006A LOMEM+1 EQU $006A
allows a statement of the form: 0069 LOMEM EQU $0069 ;Lomem pointer ®

0068 TXTTAB+1 EQU $0068

100 NEXT I , J , K I 0074 HIMEM+1 EQU $0074

0073 HIMEM EQU $0073 ;Himem pointer q
Mr. Bauers' C O M P R E S S reduces / 009C LSTLIN+1 EQU $009C

this to: j 009B LSTLIN EQU $009B ;Ptr to start of

100 NEXT 0800 jline found by FNDLIN

instead of:
00 AF EPROG EQU $00AF ;?tr to end of ©

0800 Applesoft prog
100 NEXT :NEXT :NEXT 00B9 TXTPTR+1 EQU $00B9

00B8 TXTPTR EQU $00B8 ;Ptr to current
/

0800 ;byte of program
\ introducing a logic error into your

Applesoft program!
00 FD LN2+1 EQU $00 FD

00FC LN2 EQU $00 FC ;Hex line number
Not being-ableto'COMPRESS m y 0800 ;of undefnd line © :

large program, I resorted to removing 00FB LN1+1 EQU $00FB

all the R E M s manually and finally, 00FA LN1 EQU $00FA ;Hex line number

after several hours work, m y program 0800 containing error

w a s sma l l e n o u g h to run. 00F9 TOKEN EQU $F9 ©

Unfortunately, m y source version has

suffered as it n o w lacked c o m m e n t s

and was consequently difficult to read.

0800

00B8
0800
00FC

OLDPTR

TEMP

EQU $00B8

EQU $00FC

GOSUB,THEN token

•Ptr to curr posn

;in old program -
Holds EOS byte

I resolved that I would redesign and 0800 ;until put into U3TE0S
rewrite the compression routine and I

hereunder present m y results. I have ©
called m y routine C M P R S S because it

will compress an Applesoft program ♦♦OTHER LOCATIONS™

even m o r e than C O M P R E S S does; it
03D0

03F5

EQU $03D0

EQU $03F5
also uses less R A M space.

DOSWS

BJP

DOS warmst vector ©
& vector

9500 LINBUF EQU $9500 Base address of

What CMPRSS does 0800 cmprssd In buffer q

C M P R S S compresses an Applesoft

program by:
♦♦CONSTANTS™ o

(a) Concatenating as m a n y statements

as possible onto one line, thus 0000 ENDLIN EQU $00 Non-referenced

eliminating m a n y of the unreferenced 0800 line token q

line numbers 0022 QUOTE EQU $22 ASCII quote

(b) R e m o v i n g the text of R E M
002C COMMA EQU $2C ASCII comma
0030 ZERO EQU $30 ASCII zero

statements and where possible the 0039 NINE EQU $39 ASCII '9' O
R E M itself (in s o m e instances even 003A COLON EQU $3A ASCII
w h e n a R E M line is referenced) * 0041 LETTRA EQU $41 ASCII ’A’

(c) R e m oving LETs 005A LETTRZ EQU $5A ASCII 'Z'
0082 NXTTOK EQU $82 NEXT token °

(d) Remo ving the variable n a m e s from 00AA LETTOK EQU $AA LET token
N E X T statements (correctly!) 00AB GOTOTK EQU $AB GOTO token

(e) Truncating variable nam e s to a 00B0 GOSBTK EQU $B0 GOSUB token ©

m a x i m u m of two characters* 00 AD IFTOK EQU $AD IF token

* Additional features not perform ed by
00B2 REMTOK EQU $B2 REM token

00C4 THENTK EQU $C4 THEN token
COM PRESS. 00FF

0800

0800

REFLIN EQU $FF Referenced line ©

token

No. 73 - July 1964 MICRO 43

9000 ORG $9000o 9000 A9 13 START LDA # < BEGIN ;Establish & How CMPRSS works
9002 8D F6 03 STA BJP1 ; vector

9005 A9 90 LDA #> BEGIN C M P R S S operates in two passes of your

© 9007 8D F7 03 STA BJP2 Applesoft program. T h e first pass
900A A9 00 LDA #< START ;Reset HIMEM to
900C 85 73
900E A9 90

STA HIMEM

LDA #> START
; protect CMPRSS consists of scanning the program for

referenced line numbers which are

© 9010 85 74 STA HIMEM+1 found in the following Applesoft

9012 60 RTS statement types:

9013 20 FB DA BEGIN JSR CRDO ;Output CR to screen GOTO
A 9016 A9 62 LDA #< PASS1A ; Print PASS #1 GOSUB

9018 A0 94 LDY #> PASS1A ;message IF...THEN
901A 20 3A DB JSR STROUT ON...GOTO
901D A2 00 LDX #$00 ;Init error mess ON...GOSUB

© 901F 86 00 STX ERRORS

9021 20 97 D6 JSR STXTPT ;Init TXTPTR C M P R S S does not check the

9024 20 B1 00 NXTLIN JSR CHRGET ;Get next byte following c o m m a n d s for referenced
9027 A0 01 LDY #$01 line numbers:

© 9029 B1 B8 LDA (TXTPTR),Y ;End-of-prog?
LIST R U N D E L

902B D0 27 BNE SAVLIN ;No-so branch
902D 20 FB DA JSR CRDO T h e s e s t a t e m e n t s are not

A 9030 A9 6D LDA # < PASS1B ;Print End Passl c o m m o n l y used and can be adjusted
W

9032 A0 94 LDY #> PASS1B manually after running C M P R S S if

9034 20 3A DB JSR STROUT they should occur.

9037 20 FB DA JSR CRDO ;CR to screen In this first pass, each time a line
© 903A A5 00 LDA ERRORS ;Any errors-Passl n u m b e r is referenced, s o m e h o w it

903C F0 10 BEQ PASS2 ;No-so Pass2 m ust be recorded so that w h e n the

A

903E 20 FB DA
9041 A9 7C

JSR CRDO
LDA # < ERRMES ;Print Not Com-

Applesoft program is compressed

during Pass #2, referenced line
9043 A0 94

9045 20 3A DB

LDY #> ERRMES

JSR STROUT

;pressed message
numbers will not be removed. Mr.

9048 20 03 91 JSR RESTOR ;Remove $FF tokens Bauers' C O M P R E S S uses a Called Line

A 904B 4C D0 03 JMP DOSWS ;BASIC via DOS N u m b e r Table which severely limits
©

904E 20 22 91 PASS2 JSR SECOND ;Perform Pass2 the n u m b e r of referenced lines you can

9051 4C D0 03 JMP DOSWS ;BASIC via DOS have in your program, especially as it

9054 C8 SAVLIN INY ;Save Line# does not check for duplicates. I have
o 9055 B1 B8 LDA (TXTPTR),Y decided to use a method of recording a

9057 85 FA STA LN1 line n u m b e r as being referenced which
9059 C8 INY imposes n o restriction u p o n the

©
905A B1 B8

905C 85 FB

905E A5 B8
9060 18

LDA (TXTPTR),

STA LN1+1
LDA TXTPTR

CLC

Y
amount. It involves flagging the

referenced lines within the Applesoft

program itself. For example, take the

© 9061 69 03 ADC #$03 ;Inc TXTPTR to following simple program:

9063 85 B8 STA TXTPTR jfirst byte in 10 INPUT J

9065 90 02 BCC SCANLN jtext of prog In 20 IF J=0 THEN 50

9067 E6 B9 INC TXTPTR+1 30 PRINT J
© 9069 20 B1 00 SCANLN JSR CHRGET {Search for End 40 GOTO 10

906C C9 00 CMP #ENDLIN ;of Line Token 50 END

©

906E F0 B4

9070 C9 FF

9072 F0 B0

BEQ NXTLIN

CMP #REFLIN

BEQ NXTLIN

;Unref and refnd
Each Applesoft program line is

represented in m e m o r y as follows:
/ V i * V
9074 C9 C4 CMP #THENTK ;THEN token? (aj T w o bytes in lo-byte, hi-byte order

9076 D0 0F BNE NEXT ;No-so branch which point to the beginning of the

o 9078 A0 01 LDY #$01 next Applesoft line in me m o r y . This

907A B1 B8 LDA (TXTPTR), Y 2-byte address is in hexadecimal.

907C 39 SEC (b) T w o bytes in lo-byte, hi-byte order

907D E9 30 SBC #$30 representing the line n u m b e r (in
© 907F C9 0A CMP #$0A hexadecimal] of the Applesoft line.

9081 B0 E6 BCS SCANLN (c) Following the initial 4 bytes of the
9083 A9 C4 LDA #THENTK ;Restore THEN

line is the 'text' of the Applesoft line
© 9085 D0 08

9087 C9 AB NEXT

BNE STORE

CMP #GOTOTK

;token in accum
;GOTO token?

itself. All reserved words (commands)

9089 F0 04 BEQ STORE ;Yes-so branch are represented in a single byte by a

908B C9 B0 CMP #GOSBTK ;GOSUB token? 'token'. For example, I N P U T is

© 908D D0 DA BNE SCANLN ;No-so branch

908F 85 F9 STORE STA TOKEN ;Save token

9091 20 B1 00 READLN JSR CHRGET ;Inc Ptrto In#

44 MICRO No. 73 ■ July 1984

9094 20 0C DA JSR LINGET ;Read In# and st
9097 A5 50 LDA LINNUM ©

represented by the token $84 (adopting 9099 A4 51 LDY LINNUM+1

the usual convention of preceding a 909B 85 FC STA LN2 ;Save LINNUM in

hexadecimal n u m b e r with $]. All 909D 84 FD STY LN2+1 ;LN2

tokens can be recognized as bytes with 909F 20 1A D6 JSR FNDLIN ;Look for In# O

their high bit set (i.e., $80 or greater). 90A2 B0 35 BCS CHKC0M ;Found-so branch

Applesoft tokens range from $80 (END)
90A4

90A6

E6

20
00
FB DA N0LINE

INC

JSR
ERRORS
CRDO

;Inc err count

to S E A (MID$). All the rest of the text
90A9 A5 FB LDA LN1+1

O

line (which is not represented by an 90AB A6 FA LDX LN1
Applesoft token) is represented 90 AD 20 24 ED JSR LINPRT ;Print In# w err
character by character by each 90B0 A5 F9 LDA TOKEN ©
character's ASCII code (including line 90B2 C9 C4 CMP #THENTK ;THEN token?

numbers in G O T O s etc.). All spaces are 90B4 D0 07 BNE NEXT1 ;No-so branch

eliminated by the Interpreter except 90B6 A9 59 LDA #< THEN ;Print THEN on

those within quoted strings. 90B8 A0 94

90

LDY #> THEN ; screen ^

(d) T h e end of the Applesoft line is 90BA 4C CC JMP PRINT

marked by a $00 byte. T h e hexadecimal
90BD C9 B0 NEXT1 CMP #GOSBTK ;GOSUB token?
90BF F0 07 BEQ NEXT2 ;Yes-so branch q !

representation of our sample program
90C1 A9 46 LDA # < GOTO ;Must have GOTO

in m e m o r y thus would be as follows, 90C 3 A0 94 LDY #> GOTO ;so print GOTO
starting at address $800: 90C 5 4C CC 90 JMP PRINT ;on screen

$800 00 08 08 0A 00 84 4A 00 90C8 A9 4F NEXT2 LDA # < GOSUB ;Print GOSUB © !

$808 14 08 14 00 AD 4A D0 30 90 C A A0 94 LDY #> GOSUB

$810 14 35 30 00 IB 08 IE 00 90CC 20 3A DB PRINT JSR STROUT ;Print undefd

$818 BA 4A 00 23 08 28 00 AB 90CF A5 FD LDA LN2+1 ;line § n
$820 31 30 00 29 08 32 00 80 90D1 A6 FC LDX LN2

$828 00 00 00 90D3 20 24 ED JSR LINPRT

90D6 4C DE 90 JMP CHK1

T h e end of the entire Applesoft 90D9 A2 FF CHKC0M LDX-#REFLIN ;Put $FF in prog © ;

program is marked by a sequence of 90DB 20 F0 90 JSR WRTBYT ;to flag ref In

three $00 bytes. 90DE 20 B7 00 CHK1 JSR CHRG0T ;Re-get curbyte

Because the end of each Applesoft 90E1 C9 2C CMP #C0MMA ;Comma?

line is m arked by a $00 byte, there is 90E3 F0 AC BEQ READLN ;Yes-so branch ®

also a $00 byte immediately preceding

each following line. Note that there is

90E5
90E7

90E9

A5
D0

C6

B8
02

B9

LDA
BNE

DEC

TXTPTR

NEXT3
TXTPTR+1

;Dec TXTPTR in
jprep for CHRGET

A
also a $00 byte preceding the first line 90EB C6 B8 NEXT3 DEC TXTPTR
which usually begins at $801 in 90ED 4C 69 90 JMP SCANLN
memory. 90F0 18 WRTBYT CLC ;Put $00 or $FF

T h e method I have devised of 90F1 A5 9B LDA LSTLIN ;In byte preceed ©
flagging a referenced line is to set the 90F3 69 FF ADC #$FF ;a partic Apple

$00 byte immediately preceding the 90F5 85 9B STA LSTLIN jsoft line

referenced line to $FF (note that in a 90F7 A5 9C LDA LSTLIN+1

normal Applesoft program no byte is 90F9 69 FF ADC #$FF

ever set to $FF so therre can be no
90 FB 85 9C STA LSTLIN+1

confusion).
90 FD 8A TXA ;X-reg contains

90FE A0 00 LDY #$00 ;$00 or $FF ©
After Pass #1 through the sample

9100 91 9B STA (LSTLIN), Y
program, it will look like this: 9102 60 RTS

$800 FF 08 08 0A 00 84 4A 00 9103 A5 67 REST0R LDA TXTTAB ;A11 $00 to $FF

$808 14 08 14 00 AD 4A D0 30 9105 85 9B STA LSTLIN jlnit LSTLIN to ©

$810 C4 35 30 00 IB 08 IE 00 9107 A5 68 LDA TXTTAB+1 ;start of prog

$818 B4 4A 00 23 08 28 00 AB 9109 85 9C STA LSTLIN+1

$820 31 30 FF 29 08 32 00 80 910B A2 00

90

REST1 LDX #ENDLIN
©

$828 00 00 00 910D 20 F0 JSR WRTBYT ;Put $00 before

9110 A0 01 LDY #$01 :current line
During Pass #1, while C M P R S S is 9112 B1 9B LDA (LSTLIN),Y jLoad lo-byte

flagging all referenced lines with $FF 9114 AA TAX ;of next line ptr trans O
tokens, it occurred to m e that the 9115 C8 INY ;to X-Register

routine might as well check that these 9116 B1 9B LDA (LSTLIN),Y ;load hi-byte

line numbers actually exist and so I 9118 85 9C STA LSTLIN+1 ;Update LSTLIN n
have incorporated Peter Meyer's 911A 86 9B STX LSTLIN

w

G O T O / G O S U B checker from the 911C 88 DEY

D e c e m b e r 1982 edition of M I C R O . T h e
911D B1 9B LDA (LSTLIN),Y ;End of Prog?

911F

9121

D0

60

EA BNE

RTS

REST1 ;No-so loop q

9122 20 FB DA SECOND JSR CRDO ;Start of PASS2

No. 73 - July 1984 MICRO 45

o
9125
9127

A9
A0

8F

94

LDA
LDY

#< PASS2A
§> PASS2A

;Print PASS2 mes
process of Pass #1 goes something like

9129 20 3A DB JSR STROUT

912C 20 FB DA JSR CRDO (a) Locate a G O T O , G O S U B or T H E N

912F A9 FF LDA #REFLIN ;Init variables token.

© 9131 85 04 STA LASTX (b) Call the Applesoft Interpreter

9133 A5 67 LDA TXTTAB routine L I N G E T to get the

9135 85 9B STA LSTLIN 'decimalized1 line n u m b e r and convert

A 9137 85 02 STA MEWPTR it to hexadecimal.
w

9139 85 B8 STA OLDPTR (cl Call the Applesoft Interpreter
913B A5 68 LDA TXTTAB+1 routine F N D L I N to locate the line

©
913D

913 F
9l4l

85

85
85

9C

03
B9

STA
STA

STA

LSTLIN+1

NEWPTR+1
OLDPTR+1

n u m b e r in the Applesoft program.

(d) If it is found, store $FF in the byte

9143 A5 AF LDA EPROG immediately preceding the line;

9145 85 08 STA OLDEOP otherwise print an error message on the

o 9147 A5 B0 LDA EPROG+1 screen and set the error flag.

9149 85 09 STA OLDEOP+1 (ej Repeat until the end of the

914B A9 00 LDA #ENDLIN Applesoft program is reached.

o 914D 85 0A STA LSTEOS Other Applesoft Interpreter routines
914F 85 01 STA IFFLAG used are:
9151 20 05 94 JSR DECOLD C H
9154 20 F7 93 JSR DECNEW

;Get 1st In#
;Init LINBUF

R G E T increment T X T P T R , the
© 9157

915A
20

20
C5

39
93
93

JSR

JSR

GETLIN

NEWLIN
text pointer and load the

915D 20 22 94 GETBYT JSR GETOLD ;Get next byte
next byte of the Applesoft

9160 C9 FF CMP #REFLIN ;E0Line Ref program into the
©

9162 F0 04 BEQ GB1 ;Yes-so branch Accumulator.

9164 C9 00 CMP #ENDLIN ;E0Line Unref C H -

9166 D0 17 BNE GB2 ;No-so branch R G O T sam e as C H R G E T but does

© 9168 85 0A GB1 STA LSTEOS ;Recall last End not increment T X T P T R .
916A 85 FC STA TEMP ;of Statmt Token STX-
916C 20 D0 91 JSR EOL ;Deal with EOL T P T initialize T X T P T R to the

o
916F

9171
9174

90
20

A9

EC

6E

9A
93

GB1A BCC

JSR

LDA

GETBYT

EOP
§< PASS2B

;Deal w EOProg

;Print END PASS2

byte immediately preceding

the start of the Applesoft

9176 A0 94 LDY #> PASS2B program in preparation for

ft 9178 20 3A DB JSR STROUT
C R D O

scanning through it.

917B
917E

20
60

FB DA JSR

RTS
CRDO output a carriage return to

the screen

917F C9 3A GB2 CMP #COLON ;Colon? S T R

© 9181 D0 06 BNE GB3 ;No-so branch O U T prints a text string to the
9183 20 02 92 JSR EOS ;Deal w EOStmt screen (used for messages).
9186 4C 5D 91 JMP GETBYT ;Get next byte L I N P R T prints a two-byte

A 9189 C9 AA GB3 CMP #LETT0K ;LET token? hexadecimal n u m b e r as a© 918B F0 D0 BEQ GETBYT ;Yes - ignore
decimal n u m b e r to the

918D C9 B2 CMP #REMT0K ;REM token?

918F D0 06 BNE GB4 ;No-so branch
screen.

9191 20 ID 92 JSR REMARK ;Deal with REM B y using these routines, I was able
w

9194 4C 6F 91 JMP GB1A ;Check EOP to considerably reduce the a m o u n t of

9197 C9 82 GB4 CMP #NXTT0K ;NEXT token? m e m o r y occupied by C M P R S S ; it

9199 D0 06 BNE GB5 ;No-so branch occupies 3 pages of m e m o r y less than

o 919B 20 59 92 JSR NEXTX ;Deal w NEXT C O M P R E S S and, in addition, it also
919E 4C 5D 91 JMP GETBYT checks for unreferenced line numbers.
91A1 C9 22 GB5 CMP #QU0TE ;Is it a quote? If any unreferenced line numbers

©
91A3 D0 06 BNE GB6 ;No-so branch are encountered during Pass #1, thew
91A5
91A8

91AB

20
4C

20

85
5D

2A

92

91
94 GB6

JSR

JMP
JSR

STRING
GETBYT

LETTER

;Deal with quote

;Is it a letter?

Applesoft p r o g r a m will not be

compressed. C M P R S S cannot just

91AE B0 06 BCS GB7 ;No-so branch return control to Applesoft however,

91B0 20 A6 92 JSR VARIBL ;Yes-must be var because the Applesoft program will be

91B3 4C 5D 91 JMP GETBYT sprinkled with $FF tokens. Before

91B6 C9 AD GB7 CMP #IFT0K ;IF token? returning control to the Interpreter, a
© 91B8 D0 08 BNE GB8 ;No-not special routine called R E S T O R is executed

91BA A4 01 LDY IFFLAG ;If IFFLAG isn't which replaces all $FF bytes with $00
91BC D0 04 BNE GB8 ;0 then leave bytes. Return is then m a d e via the D O S

O 91BE A4 04 LDY LASTX ;Remem beg of IF w a r m start vector at $3D0.
91C0 84 01 STY IFFLAG

91C2 20 IB 94 GB8 JSR PUTBUF ;Byte in LINBUF

91C5 90 96 BCC GETBYT ;LINBUF not full

46 MICRO No. 73 - July 1984

91C7 20 AE 93 JSR BAKTRK ;LINBUF full so

91CA 20 39 93 JSR NEVLIN jbacktrk, start ©

If no unreferenced line numbers are 91CD 4C 5D 91 JMP GETBYT ;new ln,nxt byte

encountered, CMPRSS enters Pass #2 91D0 C9 FF EOL CMP #REFLIN ;Deal w EOL

which is the compression phase. Our 91D2 D0 15 BNE E0L2 ;Ref line - No o
sample program, after compression will 91D4 A9 00 EOLX LDA GENDLIN ;Yes Replace $FF

look like this: 91D6 20 IB 94 JSR PUTBUF ;w $00 in LINBUF

91D9 20 9B 93 JSR TRNBUF ;Transfer LINBUF
10 INPUT J : IF J = 0 THEN 50 91DC ;to new program o
30 PRINT J : GOTO 10 91DC 20 C5 93 EOL0 JSR GETLIN ;Get nxt Ap In#
50 END 91DF B0 04 BCS E0L1 ;Branch If EOP

which in memory will look like: 91E1 20 39 93 JSR NEWLIN ;Newln In LINBUF
©

91E4 18 CLC ;Flag not EOP
$800 00 10 08 0A 00 84 4A 3A 91E5 20 D5 92 E0L1 JSR RESOLD ;Rset OLDBEG ptr
$808 AD 4A D0 30 C4 35 30 00 91E8 60 RTS
$810 IB 08 IE 00 BA 4A 3A AB 91E9 A5 01 E0L2 LDA IFFLAG ;Force EOL? ©
$818 31 30 00 21 08 32 00 80 91EB D0 E7 BNE EOLX ;Yes-so branch
$820 00 00 00 91ED A9 3A LDA #C0L0N ;Colon-mark EOS

All $FFs have been replaced by $00
91EF 86 04 STX LASTX jUpdte LASTX ptr

91F1 20 IB 94 JSR PUTBUF ;Colon in LINBUF ©
aga in . T h is p rogram has been 91F4 90 05 BCC E0L4 ;Not full-branch
compressed by 8 bytes or 20% of the 91F6 CA E0L3 DEX
original size. Programs containing 91F7 A9 FF LDA #REFLIN ;Force EOL

©
REMs and long variable names show 91F9 D0 D5 BNE EOL ;Always branch

m uch more spectacular reductions 91FB 20 C5 93 E0L4 JSR GETLIN ;Get new In#

after compression. 91FE B0 F6 BCS E0L3 ;E0P - branch

9200 90 E3 BCC E0L1 ;Not EOP-branch ©

9202 86 04 EOS STX LASTX ;Deal w EOS

Techniques used by CMPRSS for
Compression

9204
9207

9209

20

90
CA

IB

0C

94 JSR PUTBUF
BCC E0S1
DEX

jUpdte LASTX ptr

;LINBUF not full
©

(a) Concatenation of statem ents and
920A A9 00 LDA #ENDLIN ;terminate In

920C 20 IB 94 JSR PUTBUF ;$00 In LINBUF
rem oval of line numbers. 920F 20 9B 93 JSR TRNBUF ©
As m any statem ents as possible are 9212 20 39 93 JSR NEWLIN ;Start a new line
concatenated onto each line (to a 9215 ;In LINBUF

m axim um of 255 characters per line). 9215 20 D5 92 E0S1 JSR RESOLD ;Reset OLDBEG ptr

This often results in longer lines than 9218 A9 00 LDA GENDLIN ©

can ever be keyed in manually through 921A 85 0A STA LSTEOS ;Set last EOS to

the keyboard. Referenced lines cannot 921C 60

94

RTS ;$00

be concatenated, so the process stops
when an $FF token is encountered.

92 ID
9220

9222

20

C9
F0

22
FF

08

REMARK JSR GETOLD
CMP #REFLIN

BEQ REM1

;Deal with REM

;lst loop reading

;bytes until EOL

©

Also, if an IF statem ent occurs in the 9224 C9 00 CMP #ENDLIN ;($00 or $FF) is
Applesoft line, then the next line 9226 D0 F5 BNE REMARK ;reached ©
cannot be concatenated on the end or it 9228 A0 00 LDY #$00 ;Set Y-reg to re-

will alter the logic flow of the program. 922A ;member that

E.g, 922A F0 02 BEQ REM2 ;$00 was EOL

100 IF A = B THEN A = A + 1
922C A0 01 REM1 LDY #$01 ;or $FF was EOL ©

922E 85 FC REM2 STA TEMP ;Temp store EOL
110 B = B + 1

9230 E0 04 CPX #$04 ;Is REM on sep In?

cannot be compressed as: 9232 F0 04 BEQ REM3 ;Yes, so branch
©

1 0 0 I F A = B T H E N A = A + 1 :

B = B + 1

9234

9235
9238

CA
4C

A5

D0
0A

91

REM3

DEX

JMP EOL

LDA LSTEOS

;No, so drop REM

;Is Rem referencd
because in the original program, B = B 923A D0 07 BNE REM4 ;Yes, so branch ©
+ 1 is always performed regardless of 923C C0 00 CPY #$00 ;Is nxt In ref?
the values of A and B, whereas in the 923E F0 11 BEQ REM5 ;No, so branch

"com pressed" version B = B + 1 is 9240 4C DC 91 JMP EOL0 ;Drop Rem line
©only executed when A = B. This is of 9243 C0 00 REM4 CPY #$00 ;Is nxt In ref?

param ount im portance. Take the 9245 F0 0A BEQ REM5 ;No, so branch

following example from Mr. Bauers' 9247 A9 B2
94

LDA #REMT0K ;Retain REM, put

article: 9249 20 IB JSR PUTBUF ;token in LINBUF ©
924C A9 FF LDA #REFLIN ;Force EOL

(i) 10 GOTO 50 924E 4C D0 91 JMP EOL
20 J = 5 9251 A5 0A REM5 LDA LSTEOS ;Carry LSTEOS
50 END 9253 85 FC STA TEMP ;to next line ©

9255 20 C5 93 JSR GETLIN ;Get nxt In #
9258 60 RTS

No. 73 - July 1984 MICRO 47

o 9259 20 IB 94 NEXTX JSR PUTBUF Deal w NEXT stm

925C 90 07 BCC NEXTA NEXT token in

925E 20 AE 93 JSR BAKTRK LINBUF, branch His C O M P R E S S would leave this

9261 ;if not full else backtrack program as it is, because although line

o 9261 ;to previous EOS #20 is not referenced, he says that

9261 20 39 93 JSR NEWLIN concatenating it onto line #10:

9264 60 RTS
(ii) 10 GOTO 50 : J = 5

9265 20 22 94 NEXTA JSR GETOLD

9268 C9 FF CMP #REFLIN 50 END

926A F0 15 BEQ NEXTB would cause the J = 5 statement never

926C C9 00 CMP #ENDLIN to be executed. This is true, but in fact,
© 926E F0 11 BEQ NEXTB if you carefully examine the original

9270 C9 3A CMP #C0L0N EOS yet? program, (i), you will see that it will
9272 F0 0D BEQ NEXTB Yes, so branch not even be executed in the original! So

o 9274

9276

C9 2C CMP #C0MMA More than one

var in NEXT?
the program at (ii) is perfectly

9276 D0 ED BNE NEXTA No, so branch
acceptable b e c a u s e it b e h a v e s

9278 A9 3A LDA #C0L0N Write a : NEXT identically to the original. It is perhaps

© 927A 20 IB 94 JSR PUTBUF for each comma preferable to (i) because it emphasizes

927D A9 82 LDA #NXTT0K Load NEXT into the "dead code". As soon as you see

927F D0 D8 BNE NEXTX Accum, always BR the J = 5 appended to the G O T O

9281 20 05 94 NEXTB JSR DECOLD Backstep OLDPTR statement, you can see that there is
© 9284 60 RTS and return something wrong. If there is no "dead

9285 20 IB 94 STRING JSR PUTBUF Deal w Quoted Str code” in your program, then all lines
9288 90 07 BCC COPYST Put quote in LIN following a terminal statement such as

©
928A

20

20

JSR

JSR

BAKTRK
NEWLIN

BUF, BR not full
G O T O , R E T U R N , S T O P or E N D will

928A

928D

AE

39
93

93

SBAK Full, so backtrak

to end of prev
always be referenced and there is no

9290 60 RTS stm, start new need for C M P R S S to take any special

© 9291 line in LINBUF action.

9291 20 22 94 COPYST JSR GETOLD (b) Removal of REMs
9294 20 IB 94 JSR PUTBUF It is important, especially in a large

PS
9297 B0 FI BCS SBAK If LINBUF full BR program, to liberally sprinkle the

KJ 9299 CA DEX

#QU0TE ;Is char Just

LINBUF.X ;placed a Quote

program with meaningful R E M a r k s - it
929A

929C
A9
DD

22

00 95

LDA
CMP

mak e s the program listing m u c h easier

©
929F F0 03 BEQ CLQUOT Yes,so branch

to follow. But R E M statements are

92A1 E8 INX Restore X-reg in c l u d e d in a p r o g r a m for

92A2 D0 ED BNE COPYST Always branch documentation purposes only and serve

92A4 E8 CLQUOT INX Restore X-reg no useful purpose during execution. In

© 92A5 60 RTS fact, the text of a R E M occupies m a n y

92A6 20 IB 94 VARIBL JSR PUTBUF Truncate var valuable bytes of m e m o r y and often is

92A9 ;name to maximum 2 chars assigned a line n u m b e r of its o w n so

A 92A9 90 07 BCC VAR1 LINBUF not full BR that, apart from the text of the R E M
KJ 92AB 20 AE 93 VBAK JSR BAKTRK (one byte per character), an additional

92AE 20 39 93 JSR NEWLIN
four bytes for the line n u m b e r and link

92B1

92B2

60

20 22 94 VAR1

RTS

JSR GETOLD Get next byte
bytes, one byte for the R E M token and

w
92B5 20 2A 94 JSR LETTER Is it a letter?

one byte for the end-of-statement token

92B8 90 05 BCC VAR2 Yes, so branch are wasted. If the R E M statement

92BA 20 38 94 JSR NUMBER Is it a number? occupies a line of its own, then

© 92BD B0 12 BCS VAR4 ,No, so branch C M P R S S will remove it entirely if it is

92BF 20 IB 94 VAR2 JSR PUTBUF ,Put 2nd char in not referenced. If it is referenced but

92C2 B0 E7 BCS VBAK LINBUF,if full BR the following line is not referenced, the
92C4 20 22 94 VAR3 JSR GETOLD R E M line is also removed as s h o w n

y j
92C7 20 2A 94 JSR LETTER below:
92CA 90 F8 BCC VAR3

92CC 20 38 94 JSR NUMBER 50 GOSUB 1000

© 92CF 90 F3 BCC VAR3

92D1 20 05 94 VAR4 JSR DECOLD ,Dec OLDPTR and

92D4 60 RTS return 1000 REM THIS IS A SUBROUTINE

92D5 A4 01 RESOLD LDY IFFLAG (Reset OLDBEG 1010 A = 10
©

92D7 D0 08 BNE RSI ;ptr except in

92D9 A5 B8 LDA OLDPTR ;mid of an IF

92DB 85 05 STA OLDBEG 1090 RETURN

© 92DD A5 B9 LDA OLDPTR+1
%Br

92DF 85 06 STA OLDBEG+1

92E1 60 RSI RTS

48 MICRO No. 73 • July 1984

92E2 20 FB DA SUMARY JSR CRDO ;Print result of

92E5 A9 A6 LDA # < MESS1 ;empress to scrn O
92E7 A0 94 LDY #> MESS1 ; p m t orig lngth

If line #1010 is not referenced, it does
92E9 20 3A DB JSR STROUT

92EC 38 SEC
not matter whether it has line #1010 or 92ED A5 08 LDA OLDEOP o
line #1000, so the R E M will be 92EF E5 67 SBC TXTTAB
c o m p l e t e l y r e m o v e d a n d the 92F1 AA TAX

unreferenced line, A = 10, will be 92F2 A5 09 LDA OLDEOP+1 o
given the line n u m b e r of the referenced 92F4 E5 68 SBC TXTTAB+1

R E M . E.g., 92F6 20 24 ED JSR LINPRT

92F9 20 2E 93 JSR PRT1A
1000 A = 10

92FC A9 C0 LDA #< MESS2 ; pmt lngth of o
This does not alter the performance 92 FE A0 94 LDY §> MESS2 jcompressd prog

of the program and saves 6 bytes more 9300 20 3A DB JSR STROUT

than Mr. Bauers' C O M P R E S S which 9303 38 SEC A
would compress the sam e statements 9304 A5 AF LDA EPROG

as: 9306 E5 67 SBC TXTTAB

9308 AA TAX
1000 REM 9309 A5 B0 LDA EPROG+1 o
1010 A = 10 930B E5 68 SBC TXTTAB+1

T h e only time that a R E M token has 930D 20 24 ED JSR LINPRT

to remain in the program is w h e n it is a

referenced R E M and the following line

is also referenced. E.g.,

9310

9313
9315
9317

20

A9

A0

20

2E 93
D7

94

3A DB

JSR

LDA

LDY

JSR

PRT1A

< MESS3

#> MESS3
STROUT

;pm t # of bytes
;compressed

o

15 GOSUB 500 931A 38 SEC o
93 IB A5 08 LDA OLDEOP
93 ID E5 AF SBC EPROG

500 REM THIS IS A REM 93 IF AA TAX

510 INPUT X,Y 9320 A5 09 LDA OLDEOP+1 o
520 IF X = 0 OR Y = 0 THEN 510 9322 E5 B0 SBC EPROG+1

530 RETURN 9324 20 24 ED JSR LINPRT
9327 20 2E 93 JSR PRT1A

This would compress to: 932A 20 FB DA JSR CRDO o
15 GOSUB 500 932D 60 RTS

932E A9 E7 PRT1A LDA §< MESS1A ; p m t the word

9330 A0 94 LDY # > MESS1A ;bytes after the ©
500 REM 9332 20 3A DB JSR STROUT ;above 3 messge

5 1 0 I N P U T X , Y : I F X = 0 O R 9335 20 FB DA JSR CRDO

Y = 0 THEN 510 9338 60 RTS

530 RETURN 9339 A9 00 NEWLIN LDA #ENDLIN ;Start a new In ©

If the R E M is at the end of a 933B 85 01 STA IFFLAG ;in LINBUF, 1st

multistatement line, it is always
933D

20

20

D5 92

5F 93

;reset OLDBEG and IFFLAG

removed completely and, if possible,
933D
9340

JSR

JSR

RESOLD

WRTLNK ;Write the link ©
other lines will be concatenated in its

9343 A5 02 LDA NEWPTR ;bytes at beg
place. E.g., 9345 ;of last compressed line

100 XI = X : REM SAVE X-COORDINATE 9345 85 9B STA LSTLIN ;Remember positn ©
110 Y1 = Y : REM SAVE Y-C00RDINATE 9347 A5 03 LDA NEWPTR+1 ;of strt of new

120 INPUT X,Y 9349 85 9C STA LSTLIN+1 ;ln Just being

934B ;commenced
would compress as: 934B 20 F7 93 JSR DECNEW ;reset NEWPTR ©

100 XI = X : Y1 = Y : INPUT X,Y 934E A2 02 LDX m 2 ;Write nxt In §

a very spectacular compression of the
9350 A5 FA LDA LN1 ;at start of LINBUF

9352 9D 00 95 STA LINBUF,X /-v
original 68 bytes into 21 bytes! This is

9355 E8 INX
0

7 0 % compression. 9356 86 04 STX LASTX ;Init LASTX for

(c) Rem oval of LETs 9358 A5 FB LDA LN1+1 ;new line

Because the two statements, L E T A = 93 5A 9D 00 95 STA LINBUF,X o
B and A = B m e a n exactly the same 935D E8 INX

thing, C M P R S S r e m o v e s the 93 5E 60 RTS

unnecessary L E T token, saving one

byte.

935F

9361

A0

20
00

E9 93

WRTLNK LDY

JSR
#$00
INCNEW

;Write link bytes

;at start of last
o

9364 A5 02 LDA NEWPTR ;compressed line

9366 91 9B STA (LSTLIN),1

9368 C8 INY ©
9369 A5 03 LDA NEWPTR+1

936B 91 9B STA (LSTLIN),Y

No. 73 - July 1984 MICRO 49

(d) Removal of Variable Names fiom

o
936D 60 RTS N E X T Statements
936E 20 5F 93 EOP JSR WRTLNK ;Deal with EOP Not only does the removal of the
9371 20 97 D6 JSR STXTPT ;Put $00 before variable name(s) associated with a
9374 A9 00 LDA #$00 ;lst byte of new

N E X T token save m emory, but it also

o 9376

9377

A8

91 B8

TAY

STA

jprog in case a

(TXTPTR),Y ;Write two
enables the Applesoft interpreter to

9379 91 02 STA (NEWPTR),Y :extra $00 execute the F O R . . N E X T loop(s) faster,

937B 20 E9 93 JSR INCNEW ;bytes to new because it obviates the need for it to

o 937E 91 02 STA (NEWPTR),Y jprog (3 in a check that the variable n a m e refers to

9380 20 E9 93 JSR INCNEW ;row is EOP) the currently active FOR. C M P R S S

9383 A5 02 LDA NEWPTR correctly performs this removal even in

9385 85 AF STA EPROG ;Set new EOP ptr the instance where mor e than oneo 9387 85 69 STA LOMEM ;Set new LOMEM F O R . . N E X T loop terminates on the
9389 85 6b STA ARS ;Set new strt of s ame statement:
938B ;array space

100 NEXT 11, 12Q 93 8B 85 6d STA EARS ;Set new end of
\dr

93 8D A5 03 LDA NEWPTR+1 ;array space C M P R S S will transform this into:
938F 85 B0 STA EPROG+1

100 NEXT : NEXT
9391 85 6a STA L0MEM1

O 9393 85 6C STA ARS+1 saving one byte for each character of

9395 85 6e STA EARS+1 each variable n a m e removed.

9397 20 E2 92 JSR SUMARY ;Print results (e) Tmncation of Variable Names To a

o 939A 60 RTS ;of compression
Maximum of 2 Characters

939B CA TRNBUF DEX :Transfer LINBUF

939C ;to New Program Area
N o longer is it necessary for you to

939C 86 07 STX MAXX ;Store max loop n a m e all y o ur variables wit h

o 939E

93 A0

A2 00 LDX #$00 ;Reset X-reg for
;transfer loop

meaningless n a m e s like A $, C 1 % , Q 2

etc. to save space. Y o u can give your

93 A0 BD 00 95 LOOPl LDA LINBUF,X ;Load next byte variables longer, m o r e meaningful

93A3 jfrom LINBUF nam e s like A M O U N T , N A M E S etc.o 93A3 20 13 94 JSR PUTNEW ;Trans to new and retain these in the listable 'source'
93A6 E8 INX ;program area version for ease of understanding what
93 A7 E4 07 CPX MAXX ;Loop complete? the program is doing. But the Applesoft

o 93A9
93AB

93AD

93AE

F0 F5

90 F3
60

A6 01

BEQ

BCC

RTS

LDX

LOOPl

LOOPl

;No, so do again

;No, so do again
interpreter only recognizes the first 2

characters of a variable name, so

BAKTRK IFFLAG ;Backtrk to prev variables A M O U N T and A M T would

o 93B0 :E0S or start of IF statemt be identical as far as Applesoft is

93B0 D0 02 BNE BK1 concerned. It will only recognize the

93B2 A6 04 LDX LASTX ;Reset X-reg to A M . C M P R S S uses this fact to reduce

Q
93 B4 A9 00 BK1 LDA #ENDLIN jprev EOS your program as m u c h as possible.

93B6 20 IB 94 JSR PUTBUF A M O U N T becomes A M and N A M E S

93B9 A5 05 LDA OLDBEG becomes N A $. T h e compressed version
93 BB 85 . B8 STA OLDPTR is hard to read, but you should never

o 93 BD A5 06 LDA 0LDBEG+1 list the compressed version. It will
93BF

93 Cl
93 C4

85 B9
20 9B

60
93

STA

JSR
RTS

0LDPTR+1

TRNBUF
certainly operate the same as the

original, but m u c h more efficiently.

o 93C5 A0 02 GETLIN LDY #$02 ;Get In # of Y o u should always keep two versions

93 C7 B1 B8 LDA (OLDPTR),Y jcurr old In of your program, the original, readable

n3C9 F0 1C BEQ GET1 ;If hibyte of link- version and the compressed one.

o 93 CB C8 INY ;byte pair is zero

93 CC :then this is EOP
Executing CMPRSS93CC B1 B8 LDA (OLDPTR),Y ;Get lobyte

93 CE 85 FA STA LN1 ;remember it

o 93D0

93D1

C8 INY ;Update last

;E0S byte

1. Type B R U N C M P R S S (RETURN).

This will load C M P R S S at $9000 and

93D1 B1 B8 LDA (OLDPTR),Y ;Get hibyte reset H I M E M to protect itself. It also

93D3 85 FB STA LN+1 ;remember it installs the vector to enableo 93D5 A5 FC LDA TEMP ;Update last C M P R S S to be easily run.
93D7

85 0A
20 F0

20 F0

LSTEOS

INCOLD

INCOLD

;E0S byte 2. If your Applesoft program is already

o
93D7

93D9
93DC

93

93

STA

JSR

JSR

;Get OLDPTR just

;before 1st byte

;of actual Apple

in me m o r y , type & (R E T U R N) and

your program will be compressed;

93DF 20 F0 93 JSR INCOLD ;soft line otherwise key in or L O A D your

93E2 20 F0 93 JSR INCOLD Applesoft program from disk and then

o 93E5 18 CLC ;Flag not EOP type & (RETURN). Compression takes

93E6 60 RTS a mere 5 seconds or so for the largest

93E7 38 GET1 SEC ;Flag EOP program.

50 MICRO No. 73 ■ July 1984

It is important to note that

y o u s h o u l d a l w a y s S A V E the
93E8 60

93E9 E6 02 INCNEW
RTS

INC NEWPTR ;Incr NEWPTR O
"uncompressed" version B E F O R E you 93EB D0 02 BNE INI
run C M P R S S , or the valuable R E M s 93ED E6 03 INC NEWPTR+1
and meaningful variable names will be 93EF 60 INI RTS
lost forever. 93F0 E6 B8 INC0LD INC OLDPTR ;Incr OLDPTR O

If there are no non-existent line 93F2 D0 02 BNE IN2

numbers, the display on the screen will 93 F4 E6 B9 INC 0LDPTR+1

look something like: 93F6 60 IN2 RTS
O

93F7 18 DECNEW CLC ;Decr NEWPTR
*** PASS 1 *** 93F8 A5 02 LDA NEWPTR
*** END PASS 1 *** 93FA 69 FF

93FC 85 02

93FE A5 03

ADC #$FF

STA NEWPTR

LDA NEWPTR+1

©

*** PASS 2 *** 9400 85 03
9402 69 FF
9404 60

ADC #$FF
STA NEWPTR+1

RTS O

OLD PROGRAM LENGTH: 16224 BYTES 9405 18 DECOLD CLC ;Decr OLDPTR
NEW PROGRAM LENGTH: 9528 BYTES 9406 A5 B8 LDA OLDPTR
PROGRAM COMPRESSED BY: 6696 BYTES 9408 69 FF ADC #$FF ©

*** END PASS 2 *** 940A 85 B8

940C A5 B9

STA OLDPTR

LDA 0LDPTR+1

If, however, non-existent line
940E 69 FF ADC #$FF

A

numbers have been encountered during
9410 85 B9

9412 60

9413 20 E9 93

STA 0LDPTR+1

RTS

W

Pass #1, they will be reported and your PUTNEW JSR INCNEW ;Store Accum in
program will not be compressed. T h e 9416 A0 00 LDY #$00 ;new prog area rs
display, in this case, will look 9418 91 02 STA (NEWPTR), Y
something like this: 941A 60 RTS

941B 9D 00 95 PUTBUF STA LINBUF,X ;Put Accum into
*** PASS 1 *** 941E E8 INX ;LINBUF ©
8560 GOSUB4170 941F E0 FD CPX #$FD ;Set if LINBUF
9000 GOTO3010 9421 60 RTS ;is full
9050 THEN9095 9422 20 F0 93 GETOLD JSR INC0LD ;Get a byte from
***END PASS 1 *** 9425

9425 A0 00 G0T0LD LDY #$00
;the old prog ©

9427 B1 B8 LDA (OLDPTR),Y
*** NOT COMPRESSED ***

9429 60 RTS ©

T h e line numbers of the offending
942A C9 41 LETTER CMP #LETTRA ;Is byte a lettr

942C 90 06 BCC NOLETR jIf < 'A' then
statements are 8560, 9000 and 9050. 942E C9 5A CMP #LETTRZ ;not a letter

T h e non-existent lines are 4170, 3010 9430 90 04 BCC ISLETR ;If < 'Z',is ltr ©

and 9095. 9432 F0 02 BEQ ISLETR iIf = 'Z',is ltr

The program resides just below 9434 38 N0LETR SEC ;Set carry,not a letter

DOS from $9000 to $94FF and the 9435 60 RTS
©

space from $9500 to $95FF is used for 9436 18

9437 60

9438 C9 30

ISLETR CLC

RTS

CMP #ZER0

;Clear carry, is letter

the Compressed Line Buffer where the
NUMBER ;Is byte number?

current compressed line is assembled 943A 90 06 BCC N0NUMB ;If < '0',not # ©
before being written back into the 943C C9 39 CMP #NINE
Applesoft program. 943E F0 04 BEQ ISNUMB ;If = '9',is #

Once CMPRSS is installed, your 9440 90 02 BCC ISNUMB ;If < '9',is # /r\
Applesoft programs m a y be L O A D e d , 9442 38 N0NUMB SEC ;Set carry,not a number ©

changed, S A V E d and C M P R S S e d by 9443 60 RTS

merely keying & (RETURN). Y o u can 9444 18 ISNUMB CLC ;Clear carry, is number

even run t h e m and, provided that they 9445 60 RTS O

never alter HIMEM, POKE any values 9446 20 20 20 GOTO ASC 1 GOTO 1

into m e m o r y locations $9000 to $94FF, 944F 20 20 20

9458 20 20 20

GOSUB
THEN

ASC ' GOSUB '
ASC ' THEN '

or alter the & vector, C M P R S S will
9460 2A 2A 2A PASS1A ASC '*** PASS 1 1 ©

remain u n h a r m e d and m a y be used 946B 2A 2A 2A PASSIB ASC '*** END PASS1 '
again and again. If, however, you need 9479 2A 2A 2A ERRMES ASC '*** NOT COMPRESSED '
the 1.5K bytes w h i c h C M P R S S 948C 2A 2A 2A PASS2A ASC '*** PASS 2 '
occupies because you are running a 9497 2A 2A 2A PASS2B ASC '*** END PASS 2 '

very large program, you can reset 94A6 4F 4C 44 MESS1 ASC 'OLD PROGRAM LENGTH: 1

HIMEM to just below DOS ($9600) and 94BC 4E 45 57 MESS2 ASC 'NEW PROGRAM LENGTH: '

then, next time C M P R S S is required, 94D1 50 52 4F MESS3 ASC 'PROGRAM COMPRESSED BY ' ©

you will have to B R U N it from disk 94E7 20 20 42 MESS1A ASC ' BYTES T

94EF END
again. JMCRO

No. 73 - July 1984 MICRO 51

U a fiu n a

Save time and mathematical aggravation
with a compilation of defined functions in
a very friendly program

F
USEFUL

N

EDITOR’S NOTE

In last m onth 's issue we printed a
program tha t allowed you to easily
access various defined functions. This
saved tim e and aggravation when
w o rk in g w i th c o m p l ic a te d
m a th e m a t ic a l f o rm u la s . As a
continuation of th is approach, we
present the second of three programs
which w ill pu t a host of valuable
form ulas and functions at your
fingertips. Again we invite you to send
in any defined functions you may be
using that are not m entioned. The
subm issions we receive w ill be
collected and published in a future
issue.

PROGRAM #2

This program includes the formulas for
trigonom etric ratios, two formulas
dealing w ith m atters related to aviation
(the effect of wind on ground speed and
density altitude), the formulas for
c o n v e r t in g te m p e r a tu r e s fro m
Fahrenheit to Celsius and vice versa,
plus the formulas that comprise O hm 's
Law and determine the resistance
factor of electrical wires, and finally
the formula that determines future
values based on compound interest,
present value and the tim e span to be
exam ined. The s tru c tu re of the
program is identical to the one
described above.

T
I
O
N
S

Part 2

by Paul Garrison

o
1 REM FUNCTIONS (DELETE THOSE NOT USED IN A PROGRAM)

2 PI=3.l4l59

o 3 RAD=57.2958
47 DEF FNHYP(X,Y)=SQR(Xt2+Yt2):

HYPOTENUSE

REM FIND

48 DEF FNHX(H,Y)=SQR(Ht2-Yt2): REM FIND SIDE

o X,HORIZONAL
49 DEF FNVY(H,X)=SQR(Ht2-Xt2): REM FIND SIDE

Y,VERTICAL

50 DEF FNANGL(A)=90-A: REM FIND ANGLE A OR B

o 51 DEF FNX(H,A)=H*COS(A*(PI/180)):
BY H

8c A

REM FIND SIDE X

o 52 DEF FNY(H,A)=H*SIN(A*(PI/180)):
BY H

& A

REM FIND SIDE Y

53 DEF FNB(X,Y)=(ATN(X/Y))*(180/PI): REM FIND A OR B BY

o X

8c Y
60 DEF FNWC(WV,WD,MC,MV)=-l*WV*COS((WD-MC-MV)/RAD): REM WIND

COMPONENT,AI CRAFT
© 61 DEF FNDENALT(PA,F)=(145426*(l-(((288.15-

©

PA* .001981)/ 2 8 8 .15)1 5.2563/((273.15+F)/288.15))t .235))

52 MICRO No. 73 • July 1984

62 REM DENSITY ALTITUDE
63 DEF FN FC (F)=(F-32)/1.8: REM DEG.F. TO DEG.C.
64 DEF FNCF(C)=(C*1.8)+32: REM DEG.C. TO DEG.F.
65 DEF FNVA(V,A)=V/A
66 DEF FNV0(V,0)=V/0
67 DEF FNA0(A,0)=A*0

REM OHM=VOLT/AMPERE
REM AMP=VOLT/OHM
REM VOLT=AMP*OHM

68 DEF FNWR(M,L)=10.4*L/M: REM WIRE RESISTENCE
69 DEF FN C P (P V ,I,C P)= P V *(l+ (I/100))tC P : REM COMPOUND INTEREST100 REM (PRO
GRAM TITLE, AUTHOR) q
110 REM (TYPE OF BASIC USED)
120 GOTO 200
130 ?"---RETURN
140 HOME:VTAB(1 0) :RETURN O
150 ? : INPUT "P ress > RETURN< (Q to q u i t) ",R$
155 IF R$="Q" THEN 160 ELSE RETURN
160 GOSUB 140.-GOSUB 1 3 0 :?TAB(33) "End. GOSUB 130 :END 0
190 REM TESTING FUNCTIONS
200 GOSUB 1 4 0 :? "Menu:":GOSUB 1 3 0 :? "A via tion f u n c t io n s : ":GOSUB 130
210 ?1, "Wind component"
220 ? 2 ,"D en sity a l t i t u d e " q
222 ?3 ,"C onvert degrees F. to degrees C ."
224 ?4, "C onvert degrees C. to degrees F. ".-GOSUB 130
230 ? "R atios f o r r ig h t t r i a n g l e s : " : GOSUB 130
240 ?5 ,"F in d hypotenuse" ©
250 ?6 ,"F in d h o r iz o n ta l s id e (X)"
260 ?7 ,"F in d v e r t i c a l s id e (Y)"
270 ?8 ,"F in d an g les A and B" q
280 ?9 ,"F in d two s id e s (X & Y) by hypotenuse & an g le"
290 ?10 ,"F ind an g les A and B by X and Y":GOSUB 130
291 ? " E l e c t r i c a l : " :GOSUB 130
292 ?11 ,"F ind ohms" ©
293 ?12 ,"F ind am peres"
294 ? 1 3 ,"Find v o l t s "
295 ? l4 ," F in d w ire resistence":GOSUB 130
296 ?15,"Compound interest":GOSUB 130 ®
300 ? l6 ," E x i t program "-.GOSUB 130
310 INPUT "Which? ", WHICH:GOSUB 140
320 ON WHICH GOTO 400 ,500 ,600 ,700 ,2000 ,2050 ,2100 ,2150 ,2190 ,2280 ,2400 ,2500 ,2600 ,2700 ,2800 ,160 ©
400 ?"F ind wind component (e f f e c t on a i r c r a f t in flight)":GOSUB 130
410 INPUT "Wind d ire c t io n ? ",WD
420 INPUT "Wind v e lo c ity ? (k n o ts) ",WV
430 INPUT "Magnetic course? ",MC ©
440 INPUT "M agnetic v a r ia t io n ? (E= - / W= +) ",MV
450 X=FNWC(WV,WD,MC,MV):GOSUB 130
460 ?"The wind component f a c to r i s ";X:GOSUB 150 :GOTO 200
500 ?"Find th e d e n s ity a l t i t u d e ".-GOSUB 130
510 INPUT "P ressu re a l t i tu d e ? ",PA
520 INPUT "Temperature? (deg rees c e n tig ra d e) ",F
530 X=FNDENALT(PA,F):GOSUB 130
540 ? "The d e n s ity a l t i t u d e i s " ;X ;" feet.":GOSUB 150:GOTO 200
600 ? "Convert degrees F. to degrees C.":GOSUB 130
610 INPUT "Degrees F .? ",F
620 X=FNFC(F):GOSUB 130
630 ? F ;" deg rees F. equal ";X ;" degrees C":GOSUB 150:GOTO 200
700 ? "Convert degrees C. to deg rees F.":GOSUB 130
710 INPUT "Degrees C.? ",C
720 X=FNCF(C):GOSUB 130
730 ?C ;" d eg rees C. equal ";X ;" deg rees F. "-.GOSUB 150-.GOTO 200
2000 ?"Find th e le n g th o f th e hypotenuse o f a r ig h t t r i a n g l e " :GOSUB 130
2010 INPUT "E nter th e h o r iz o n ta l le n g th (X) ",X

©

©

No. 73 - July 1984 MICRO 53

o

2020 INPUT "E nter th e v e r t i c a l le n g th (Y) ",Y
2030 X=FNHYP(X,Y): GOSUB 130

o 2040 ? "The le n g th o f th e hypotenuse i s ";X:GOSUB 150:GOTO 200
2050 ?"Find th e le n g th o f th e h o r iz o n ta l s id e (X) o f a r i g h t tr ia n g le G O S U B 130
2060 INPUT "E n ter th e v e r t i c a l le n g th (Y) ",Y
2070 INPUT "E nter th e d ia g o n a l le n g th (hypotenuse)",H
2080 X=FNHX(H,Y):GOSUB 130
2090 ? "The h o r iz o n ta l le n g th i s ";X:GOSUB 150:GOTO 200
2100 ?"Find th e le n g th o f th e v e r t i c a l s id e (Y) o f a r ig h t t r i a n g l e " :GOSUB 130

O 2110 INPUT "E nter th e h o r iz o n ta l le n g th (X) ",X
2120 INPUT "E n ter th e d iag o n a l le n g th (hypotenuse)",H
2130 XX=FNVY(H,X):GOSUB 130
2140 ? "The v e r t i c a l le n g th i s ";XX:GOSUB 150:GOTO 200

® 2150 ?"Find th e ang le o p p o s ite s id e X o r Y in a r i g h t tr ia n g le G O S U B 130
2160 INPUT "E n ter deg rees o f one ang le ",A
2170 X=FNANGL(A):GOSUB 130

O 2180 ?"The o th e r ang le i s " ;X ;" degrees":GOSUB 150:GOTO 200
2190 ?"Find th e two o th e r s id e s by hypotenuse and th e an g le"
2195 ? "between th e hypotenuse and th e h o r iz o n ta l side":GOSUB 130
2200 INPUT "E nter le n g th o f hypotenuse ",H

O 2210 INPUT "E nter th e deg rees o f th e ang le ",A
2220 X=FNX(H,A):GOSUB 130
2225 XX=FNY(H,A)

- 2230 ?"The h o r iz o n ta l le n g th i s ";X
2275 ? "The v e r t i c a l s id e i s ";XX:GOSUB 150:GOTO 200
2280 ?"Find th e deg rees o f two an g le s by s id e s X and Y":GOSUB 130
2290 INPUT "E nter h o r iz o n ta l s id e (X) ",X

O 2300 INPUT "E nter v e r t i c a l s id e (Y) ",Y
2310 XX=FNB(X,Y):GOSUB 130
2320 ? "Angle A (o p p o s ite X) i s ";XX;" degrees":BB=90-XX
2330 ? "Angle B (o p p o s ite Y) i s ";B B ;" degrees":GOSUB 150:GOTO 200

O 2400 ?"F ind ohms by v o l t s and am peres" :GOSUB 130
2410 INPUT "Volts? ",V
2420 INPUT "Amperes? ",A

q 2430 X=FNVA(V,A):GOSUB 130
2440 ?X;" ohms" :GOSUB 150:GOTO 200
2500 ?"F ind amperes by v o l t s and ohms":GOSUB 130
2510 INPUT "V olts? ",V

O 2520 INPUT "Ohms? " ,0
2530 X=FNV0(V,0):GOSUB 130
2540 ?X;" amperes":GOSUB 150:GOTO 200
2600 ?"F ind v o l t s by amperes and ohms":GOSUB 130

® 2610 INPUT "Amperes? ",A
2620 INPUT "Ohms? " ,0
2630 X=FNA0(0,A):GOSUB 130

q 2640 ?X ;" volts":GOSUB 150:GOTO 200
2700 ?"Find wire resistence by length and mils":GOSUB 130
2710 INPUT "Length of wire (inches) ",L
2720 INPUT "Diameter of wire (mils) ",M

O 2730 X=FNWR(M,L):GOSUB 130
2740 ?"R e s is te n c e i s ";X ;" ohms":G0SUB 150:GOTO 200
2800 ?"F ind fu tu re va lu e based on i n t e r e s t and compounding p e r io d s " :GOSUB 130

n 2810 INPUT "P resen t va lue? $",PV
2820 INPUT "Annual i n t e r e s t r a te ? %", I
2830 INPUT "Compounding p e r io d s (day/m onth/year)(D /M /Y) ",CP$
2840 IF CP$="D" THEN 1=1/365.25

O 2850 IF CP$="M" THEN 1=1/12
2860 INPUT "P eriod o f how many y ea rs? ",CP
2870 IF CP$="D" THEN CP=CP*365.25
2875 IF CP$="M" THEN CP=CP*12

© 2880 X=FNCP(PV,I,CP):GOSUB 130
2890 ? "The fu tu re v a lu e i s $";X:GOSUB 150:GOTO 200

JMCftO

54 MICRO No. 73 ■ July 1984

m

Commodore [l o A p p i e
Cassette File Loader

by A r lM a th

Your Apple can read cassette files
w ritten by a Commodore VIC-20 or
C64 computer w ith this assembly
language program . The file is written
into a sequential text file on the
Apple's disk. Three types of files are
discussed-data files, BASIC programs,
and memory ranges.

...i i - i i --- i i - . i --- l l - l l - J l i ' l l

Requires: Appk; U j^ jxh 'd isk 'drive and
optional printer, Commodore VIC-20
or C64 w ith C2N cassette drive.

=11=11 im im r =S E E

I have a Commodore VIC-20 and a C64
as well as my trusty old Apple II. Of
course I have a disk drive for the Apple,
b u t for m ass storage w ith the
Commodores I use a C2N cassette tape
drive ("D atassette”) w hich works
amazingly well. This article shows
how the Apple can read cassette files
w r i t t e n by e i th e r C o m m o d o re
computer. The method described here
can be used to transfer various kinds of
data. For example, since I do not
presently have an interface to connect
my printer to m y Commodores, I am
using this u tility to move BASIC
programs to my Apple, where I can
make hardcopy listings. It also saves a
lot of retyping when I want to convert a
C o m m o d o re BASIC prog ram to
Applesoft. Sorry, though, this program
only goes one way. I have not yet
taught the Apple to write cassette files
that Commodore computers can read,
but, w ith the information given here, I
th ink such a program would not be very
difficult to do.

The assembler listing of the main
program is show n in Listing 1.

Listing 1

x . COMMODORE-TO-APPLE CASSETTE FILE LOADER _O
BY ART MATHENY

C opyright © 198-4 O
The C om puterist, In c .
Chelm sford, MA 0182-4

/
RUNS ON APPLE I I . o

/ LOADS A TEXT FILE FROM A/ CASSETTE TAPE WRITTEN BY A
/ COMMODORE COMPUTER, AND SAVES n

IT AS AN APPLE DISK FILE.

CONSTANTS
O

0006 SLOT EQU 6 SLOT # FOR SAVING FILE
0001 DRIVE EQU 1 DRIVE # FOR SAVING FILE
00C0 BLOKLEN EQU 192 # OF CHARS IN A BLOCK
001E NAMLEN EQU 30 # OF CHARS IN FILE NAME ©

PAGE 0 VARIABLES

0006 BYTE EQU 6
o

BYTE NOW BEING READ
0007 TEMP EQU 7 ZPAGE TEMP STORAGE
0008 PTR EQU 8 POINTER INTO DATA BUFFER
000A ADR EQU $A ADDR OF MESSAGE TO PRINT 0
000C FMPL EQU $C FILE MGR PARMLIST POINTER

PAGE 3 VARIABLES ©
0300 CHSUM EQU $300 CHECK SUM BYTE
0301 PAR EQU $301 PARITY
0302 KNT EQU $302 BIT COUNTER q

0303 SCAN EQU $303 FLAG: DOING SECOND SCAN
0304 KDOWN EQU $30-4 COUNT-DOWN COUNTER
0305 START EQU $305 ADDR WHERE BLOCK STARTS
0307 FIN EQU $307 ADDR WHERE BLOCK ENDS ©

DOS SYSTEM CALLS

03DC LOCFPL EQU $3DC LOCATE PARMLIST ADDR 0

03 D6 DOSFM EQU $3D6 DOS FILE MANAGER

OTHER ADDRESSES ©

0801 LOMEM EQU $801 START OF USABLE MEMORY
0806 NAME EQU LOMEM+5 ; FILENAME LOCATION
08C2 BODY EQU L0MEM+BL0KLEN+1 ; START OF FILE ©
C060 TAPEIN EQU $C060 •CASSETTE INPUT PORT

ROM ROUTINES o

No. 73 ■ July 1984 MICRO 55

FC58 Listm9 1 HOME
FDDA (continued) PRBytE

© FDF0 C0UT1

EQU $FC58 ; CLEAR TEXT SCREEN
EQU $FDDA ; PRINT A HEX BYTE
EQU $FDF0 ; OUTPUT TO SCREEN

9000
O

ORG $9000

SET IRQ MASK TO PREVENT INTERRUPTS

° 9000 78 PROG SEI

A
PRINT HEADING

x J
9001 20 58 FC JSR HOME
9004 A9 A3 LDA 0MESG5
9006 85 0A STA ADR

© 9008 A9 91 LDA /MESG5
900A 85 0B STA ADR+1
900C 20 62 93 JSR PRMESG

Q
PUT 1ST BLOCK AT BEGINNING OF THE BUFFER

900F A9 01 LDA 0LOMEM FIN = LOMEM
© 9011 8D 07 03 STA FIN

9 0 U A9 08 LDA /LOMEM
9016 8D 08 03 STA FIN+1

W

SET UP POINTERS FOR NEXT BLOCK

©
9019 AD 07 03 LOOP LDA FIN START = OLD FIN
901C 8D 05 03 STA START START — >

90IF 18 CLC START OF BLOCK
© 9020 69 C0 ADC 0BLOKLEN FIN = START+BLOKLEN

9022 8D 07 03 STA FIN FIN — >

9025 AD 08 03 LDA FIN+1 END OF BLOCK + 1
© 9028 8D 06 03 STA START+1

902B 69 00 adc m
902D 8D 08 03 STA FIN+1
9030 C9 90 CMP /PROG BUFFER FULL

© 9032 B0 36 BCS ERR9 IF SO, QUIT READING

©
READ A BLOCK

9034 A9 00 LDA #0 SCAN=0:
© 9036 8D 03 03 STA SCAN LOAD THE BLOCK

9039 20 19 92 JSR BLOCK
903C A9 01 LDA #1 SCAN=1:
903E 8D 03 03 STA SCAN VERIFY THE BLOCK

© 9041 20 19 92 JSR BLOCK
904-4 A9 2E LDA # ' . ' PRINT A PERIOD
9046 20 F0 FD

©
JSR C0UT1

CHECK FOR END OF FILE

° 9049 AD 05 03 LDA START PTR = START

904C 85 08 STA PTR
904E AD 06 03 LDA START+1

© 9051 85 09 STA PTR+1
9053 A0 00 ld y n LOOK AT 1ST CHAR
9055 B1 08 LDA (PTR), Y OF BLOCK

_ 9057 C9 05 CMP #5 EOF MARKER
° 9059 F0 31 BEQ EOFMARK BRANCH IF SO

905B C9 02 CMP #2 DATA BLOCK
905D D0 BA BNE LOOP BRANCH IF NOT

Apple has less than 48K of memory,
move the origin down to fit the
program below DOS, but start it at the
beginning of a memory page. Moving
the origin will change the machine
code for every JSR and JMP.

There are three types of files which I
would like to transfer--data files,
BASIC programs, and memory ranges.
It will be sufficient, though, to transfer
data files because, as will be shown
later, BASIC programs and memory
dumps can both be converted into data
files prior to the transfer.

Transfer of Data Files

W ith a Commodore computer, any
kind of data can be w ritten into a tape
file. To see how this is done, let's work
through a simple example. First put a
scratch cassette in the C2N tape drive
and either rewind it to the beginning or
record the tape counter value. A
filenam e m u st be selected , say
"ANYFILE” . A logical file number
between 1 and 127 m ust also be
selected. In the following example, the
logical file number is 5:
OPEN 5 , 1 , 2 , "ANYFILE"
The device num ber is 1, which denotes
the cassette drive. The 2 indicates an
intention to write to the file and to put
an end-of-file marker at the end. Once
the file has been opened, data can be
w ritten to it w ith PRINT § statem ents
such as the following:
PRINT # 5 , "ANY CHARACTER
STRING";CHR$(13)
FOR K=1 TO 10 : PRINT #5,K;CHR$(13)
: NEXT
Since more than one file can be open at
once (i.e. on other devices), the logical
file number, 5 in this example, m ust be
specified. When the program is finished
writing, it should close the file:
CLOSE 5
The logical file number used here
indicates which file is to be closed. The
data file on the tape is now ready for
transfer.

Rewind the tape to the beginning of
the file and move the tape to a tape
player connected to the A pple's
cassette input. Now BRUN the cassette
file loader. Figure 1 shows the Apple's
TV display after a successful load
operation. The program prints a period
for every "b lo ck ” tha t it reads
successfully. That lets you know that it
is still working, which is a comfort
when long files are being loaded.

56 MICRO No. 73 ■ July 1984

T E X T FILE R E A D E R

R O L L T A P E

..END O F FILE

S A V I N G :

A N Y F I L E

D O N E

Figure 1. Typical video display of
CTACFL.

If anything goes wrong, the program

prints an error message and executes a

"break” instruction, thus leaving you

in the monitor. T o try again, rewind

the tape and enter:

9000G

T h e most likely cause of any error is a

misreckoning of the loudness control of

the tape player. This is a very touchy

setting, and it m a y take several trials to

find the right spot. M y advice is to start

very loud and to w o r k d o w n in small

increments. Other causes of error are

less likely. It is possible that there m a y

actually be bad data on the tape, in

which case you have to go back to the

C o m m o d o r e and save the file again.

Test the C o m m o d o r e C 2 N tape drive

by saving and then verifying any B A S I C

program. M a y b e the tape m e d i u m is

bad; try a different tape. If all else fails,

try a different tape player, preferably

one that is not so noisy.

Listing the File

T h e cassette file loader puts the data

into a sequential text file on the disk.

T h e program in Listing 2, called

TE X T L I S T E R , can list this or any other

sequential file. T h e output can be

directed either to the T V or to a printer.

R U N this program and give the n a m e of

the data file. C o m p a r e the output with

what the original C o m m o d o r e program

wrote. Such data files can be used as

input for Apple programs. See the

chapter on sequential files in The DOS
M anual.

T E X T L I S T E R replaces a n y

unprintable characters by an sign

to s h o w at least that there is a character

present.

BASIC Programs

Although there are similarities in

syntax between C o m m o d o r e BA S I C

Listing 1 (continued)

SEARCH THE BLOCK FOR FILE TERMINATION BYTE

905F A0 BF
9061 B1 08
9063 F0 2D
9065 88
9066 D0 F9
9068 F0 AF

FI
LDY #BL0KLEN-1
LDA (PTR), Y
BEQ HOMERUN
DEY
BNE FI
BEQ LOOP

; FILE TERMINATION
; BYTE = 0

;BRANCH ALWAYS

#####< END OF FILE > *#*##

*****< SAVE THE DATA ON DISK > *****

PRINT "BUFFER FULL"

906A A9 78 ERR9 LDA 0MESG9
906C 85 0A STA ADR
906E A9 90 LDA /MESG9
9070 85 0B STA ADR+1
9072 20 62 93 JSR PRMESG
9075 4C 9D 90 JMP FNAME
9078 C2 D5 C6 MESG9 ASC "BUFFER FULL"
9083 8D BYT $8D ; < RETURN>
9084 D3 Cl D6 ASC "SAVING: t l

908B 00 BYT 0

HIT EOF MARKER BLOCK

908C A9 00 EOFMARK LDA #0 ; INSERT ZERO
908E A0 01 LDY #1 ; INTO DATA
9090 91 08 STA (PTR), Y

PRINT"END OF FILE"

9092 A9 CC HOMERUN LDA #MESG6
9094 85 0A STA ADR
9096 A9 91 LDA /MESG6
9098 85 0B STA ADR+1
909A 20 62 93 JSR PRMESG

FIND FILE NAME

909D A9 06 FNAME LDA iWAME ; ADR = NAME
909F 85 0A STA ADR ; ADR — >
90A1 A9 08 LDA /NAME ; HEADER FILE
90A3 85 0B STA ADR+1

90A5 A0 ID
90A7 B1 0A
90A9 C9 20
90AB D0 0B
90AD 88
90AE 10 F7

90B0 A9 FB
90B2 85 0A
90B4 A9 91
90B6 85 0B

IS A FILENAME PRESENT

LDY iPNAMLEN-l
FNAME1 LDA (ADR),Y

CMP #$20 ; SPACE
BNE FNAME2
DEY
BPL FNAME1

IF NOT, USE DEFAULT NAME

LDA 0DFALT ; ADR = DFALT
STA ADR
LDA /DFALT
STA ADR+1

©

©

0

O

o

No. 73 ■ July 1984 MICRO 57

o

o

o

Sting 1 (continued)

PRINT THE FILENAME

90B8 A0 00 FNAME2 LDY #0
90BA A2 IE LDX 0NAMLEN
90BC B1 0A FNAME3 LDA (ADR),Y
90BE 09 80 ORA #$80 ;SET BIT 7
90C0 91 0A STA (ADR), Y
90C2 20 F0 FD JSR C0UT1
90C5 C8 INY
90C6 CA DEX
90C7 D0 F3 BNE FNAME3

LOCATE PARMLIST

90C9 20 DC 03 JSR LOCFPL
90CC 84 0C STY FMPL ; FMPL—>
90CE 85 0D STA FMPL+1 ; FILE MGR

PUT FILE NAME IN PARMLIST

90D0 A5 0A LDA ADR
90D2 A0 08 LDY #8
90D4 91 0C STA (FMPL),Y
90D6 A5 0B LDA ADR+1
90D8 C8 INY
90D9 91 0C STA (FMPL),Y

OPEN THE OUTPUT FILE

90DB A9 01 LDA #1 ; CALL TYPE
90DD A0 00 LDY #0
90DF 91 0C STA (FMPL),Y
90E1 A9 00 ld a m
90E3 A0 02 LDY #2
90E5 91 0C STA (FMPL),Y
90E7 C8 INY
90E8 91 0C STA (FMPL),Y
90EA C8 INY
90EB 91 0C STA (FMPL),Y
90ED A0 07 LDY #7
90EF 91 0C STA (FMPL),Y ;TEXT FILE
90F1 A9 01 LDA 0DRIVE
90F3 A0 05 LDY #5
90F5 91 0C STA (FMPL),Y
90F7 A9 06 LDA #SL0T
90F9 C8 INY
90FA 91 0C STA (FMPL),Y

PUT BUFFER ADDRESSES IN PARMLIST

90FC A9 76 LDA 0WORKAREA
90FE A0 0C LDY #$C
9100 91 0C STA (FMPL),Y
9102 A9 93 LDA /WORKAREA
9104 C8 INY
9105 91 0C STA (FMPL), Y
9107 A9 A3 LDA ^SECTOR
9109 C8 INY
910A 91 0C STA (FMPL),Y
910C A9 93 LDA /SECTOR
910E C8 INY

and Applesoft BASIC, m ost programs
w ritten for a Commodore computer
will require extensive revisions before
they will run on an Apple. The cassette
file loader could save a lot of retyping,
though, by moving programs verbatim
from the Commodore to the Apple.
First, the BASIC program m ust be
converted to a data file so that it can be
t r a n s f e r r e d . T h e p ro c e d u re is
straightforward:

1. LOAD the program into the
Commodore in the usual way.

2. Remove the program tape and
put in a ''sc ra tch '1 tape.

3. Enter the following commands
in im m ediate execution mode:

OPEN 1, 1 , 2 , "FILENAME.T X T "

CMD 1

LIST

PRINT #1

CLOSE 1

This writes the program listing into a
data file on the tape. It does not make a
copy of the original BASIC file, but
rather a replica of the program lis ting
just as it would appear on the TV. Do
not panic if the LIST step above takes 3
times as long as you would expect.

4. Rewind the scratch tape and
physically move it to the Apple's
cassette tape player.

5. BRUN the cassette file loader
and play the file through.

6. You now have a text file on the
d isk c a lle d "F IL E N A M E .T X T ” .
TEXTLISTER can be used to list it. It
can be edited w ith any text editor that
can work w ith " T ” type files. In this
step it is only necessary to fix the
syntax so that it looks like an Applesoft
program. Delete the extraneous lines at
the beginning and end of the file.
Change every "SYS" to "CALL".
Make any other changes needed to
make it conform to legal Applesoft
syntax. It is not essential for the
program to be logically correct at this
point. Save the edited file.

7. Go into Applesoft, give a NEW
command if necessary and then (here
comes the exciting part) EXEC the text
file. This step enters the text file just as
if you were typing the whole thing.

8. T he program is now in
memory, and you can LIST it. Give it a
name and save it. As a convention, I
use the same filename w ithout the
".T X T " suffix. Note that this program
now shows up as an "A ” type file in
the catalog.

58 MICRO No. 73 • July 1984

9. This program can be worked

just like any other Applesoft program,

so do whatever it takes to get it running

on the Apple.

Memory Dumps & Dissassembly

It is also possible to transfer a range of

m e m o r y from a C o m m o d o r e to an

Apple. Again, the trick is to first

generate a data file. T h e program in

Listing 3 is a C o m m o d o r e B A S I C

program which does this. T h e user is

asked to specify the starting and ending

addresses of the m e m o r y range as well

as a file n a m e for the tape file. It then

PE E K s each byte of the range and writes

that value (as decimal digits] into the

tape file. This serves as a useful

example of the procedure discussed

above for creating a data file. It also

serves as an example of a B A S I C

program that has been transferred to

the Apple to get a hardcopy listing, but

the listing s h o w n here has been

doctored slightly. (The word " C L R " in

line 10 was inserted by hand.)

T h e m e m o r y range is written into a

data file on the tape. T h e tape is

transferred to the other tape player and

loaded into the Apple by the cassette

file loader. T h e data is then loaded into

the Apple's m e m o r y by the Applesoft

program in Listing 4. Note that it does

not necessarily have to be loaded into

the s ame address range from whence it

came. U se B S A V E to save the m e m o r y

range as a conventional " B " type file if

you wish. T h e disassembler of the

monitor or autostart R O M will w o r k on

this.

Commodore Tape Format

This part gets technical, so I a m going

to start by defining a few terms.

A cycle is a complete w a v e cycle (both
half-cycles; for a square wave, both the

d o w n and the up phases).

T h e duration of a cycle is the total time
spanned by a complete cycle (both half

cycles).

There are 3 kinds of bits, each

consisting of 2 cycles of different

durations. T h e following table gives

approximate cycle durations in

microseconds:

1st cycle 2nd cycle

" 1” BIT 500 us

"0" BIT 333

S Y N C 667

333 Ms

500

500

Listing 1 (continued)
910F 91 0C

9111 A9 A3

9113 C8
9114 91 0C

9116 A9 94
9118 C8

9119 91 0C

911B A2 00

911D 20 D6 03

9120 B0 6E

STA (FMPL),Y
LDA #BUFFER
INY

STA (FMPL),Y

LDA /BUFFER
INY

STA (FMPL),Y

LDX #0

JSR D0SFM
BCS D0SERR

;NEW FILE IS OK

9122 A9 0A
9124 A0 00

9126 91 0C

9128 A9 00
912A A0 04

912C 91 0C
912E C8

912F 91 0C

9131 A2 01
9133 20 D6 03
9136 B0 58

POSITION FILE AT START

LDA #$A

LDY
STA

LDA

#0

(FMPL),Y
#0

LDY #4

STA (FMPL),Y
INY

STA (FMPL),Y
LDX #1

JSR D0SFM
BCS D0SERR

;CALL TYPE

: POSITION

0
9138 A9 04

913A A0 00

913C 91 0C

913E A9 01
9140 C8

9141 91 0C

9143 A9 C2

9145 85 08
9147 A9 08

9149 85 09

914B A2 BF

9l4D 8E 02 03

9150 A0 00
9152 B1 08

9154 F0 21

9156 09 80
9158 A0 08

915A 91 0C
915C A2 01

915E 20 D6 03
9161 B0 2D

9163 E6 08

9165 D0 02

9167 E6 09

WRITE THE DATA

LDA U
LDY #0

STA (FMPL),Y

LDA #1

INY
STA (FMPL),Y

;CALL TYPE 4 = WRITE

;0NE BYTE AT A TIME

INITIALIZE BUFFER POINTER TO
1ST BYTE OF ACTUAL DATA

LDA #B0DY
STA PTR

LDA /BODY
STA PTR+1

;PTR — > BODY

SKIP EVERY 192ND BYTE (BLOCK-TYPE TOKENS)

PRINT1 LDX #BL0KLEN-1

STX KNT ;CHAR COUNTER
PRINT2 LDY #0

LDA (PTR),Y

WATCH FOR END OF FILE,

WHICH IS MARKED BY A ZERO BYTE

;BRANCH IF ZERO

;SET BIT 7

O

BEQ WRAPUP

ORA #$80
LDY #8

STA (FMPL),Y ;BYTE TO BE WRITTEN

LDX #1

JSR D0SFM ; < WRITE THE BYTE >

BCS D0SERR ;BRANCH IF ERROR

INCREMENT BUFFER POINTER

INC PTR
BNE PRINT3

INC PTR+1

O

No. 73 ■ July 1984 MICRO 59

Listing 1 (continued)

9169 CE 02 03 PRINT3 DEC KNT ;SKIP 1ST BYTE

916C D0 E2 BNE PRINT2 ;0F EACH BLOCK
916E E6 08 INC PTR

9170 D0 D9 BNE PRINT1

9172 E6 09 INC PTR+1

9174 D0 D5 BNE PRINT1

9176 00 BRK

O

o

o

o

CLOSE OUTPUT FILE

9177 A9 02 WRAPUP LDA §2
9179 A0 00 ldy n
917B 91 0C STA (FMPL),Y
917D A2 01 LDX #1

917F 20 D6 03 JSR DOSFM

9182 B0 0C BCS DOSERR

;CALL TYPE 2 = CLOSE

PRINT"DONE" AND EXIT TO BASIC

9184 A9 E0 LDA #MESG7

9186 85 0A STA ADR

9188 A9 91 LDA /MESG7
918A 85 0B STA ADR+1

918C 20 62 93 JSR PRMESG

918 F 60 RTS ;EXIT

DOS ERROR

9190 A9 EA DOSERR LDA 0MESG8

9192 85 0A STA ADR
9194 A9 91 LDA /MESG8

9196 85 0B STA ADR+1

9198 20 62 93 JSR PRMESG

919B A0 0A LDY #$A

919D B1 0C LDA (FMPL),Y ;ERROR CODE

919F 20 DA FD JSR PRBYTE ;PRINT THE HEX

91A2 00 BRK ;ABANDON SHIP

o

©

©

©

MESSAGES

©

91A3 A0 A0 A0 MESG5 ASC ii ii

91AF D4 C5 D8 ASC "TEXT FILE LOADER"

91BF 8D 8D 8D BYT $8D,$8D,$8D

91C2 D2 CF CC ASC "ROLL TAPE"

91CB 00 BYT 0
91CC C5 CE C4 MESG6 ASC "END OF FILE"

91D7 8D BYT $8D

91D8 D3 Cl D6 ASC "SAVING:"

91DF 00 BYT 0
91E0 8D 8D MESG7 BYT $8D,$8D

91E2 C4 CF CE ASC "DONE"

91E6 8D 8D 8D BYT $8D,$8D,$8D,0

91EA 8D MESG8 BYT $8D

91EB C4 CF D3 ASC "DOS ERROR CODE:"

91FA 00 BYT 0

DEFAULT FILE NAME (30 CHARS)

91FB C3 CF CD DFALT ASC "COMMODORE FILE "

920A A0 A0 A0 ASC If H

Note that the "1" and “0" bit have the

same total duration. A byte of data is

coded as follows:

sync bit

8 data bits (LSB first...MSB last)

parity bit

T h e parity bit is " 1” if the byte parity

is even and “ 0 " if the parity is odd.
Figure 2 shows a typical byte frame.

I S Y N C | 0 | 0 | 1 | 1 | II j I | 0 | I | 1 j

Figure 2. Example of tape format for a
single byte. The SYNC bit is followed
by 8 data bits with the least
significant bit first. The value of this
byte is thus $AC in hex. The last bit
on the right is the parity bit. Since in
this case the number of “1” bits is
even, the parity Is even, so the parity
bit is “1”. The parity bit helps to
check for errors.

I will use the term “block" to

describe the next level of structure. A

block contains all the information in

the cassette buffer, which is 192 bytes.

T h e format of a block is as follows:

leader tone of continuous 333

microsecond cycles

9 count-down bytes, $89...$81

192 data bytes

c h e c k s u m byte

a single 667 microsecond cycle

about 80 cycles of 333

microseconds (spacer)

9 count-down bytes, 9...1

data bytes (repeated)

c h e c k s u m byte

a single 667 microsecond cycle

about 80 cycles of 333

microseconds (trailer)

T h e c h e cksum byte is the E O R of all of

the data bytes in the block.

A "file” is simply a sequence of

blocks. T h e first block in the file is a

header which contains the file name.

T h e last block is a special End-Of-File

marker block, although this can be

omitted. T h e actual end of the file is

indicated by a zero byte in the data after

the last legitimate character in the final

data block.

Overview of the Program

T o w a r d the end of Listing 1 is a

subroutine labeled " G E T B I T " . It

watches the cassette input (TAPEIN)

for two cycles (down, up, down, up).

60 MICRO No. 73 - July 1984

The x-register measures the duration of
the first cycle, and the y-register
measures the duration of the second
cycle. A comparison of the two tells
w hether it is a " 1” or a ' ‘0 " . The bit is
left in the carry flag so that it can easily
be rotated into the data byte.

Obviously, the tim ing of this
program is critical because the cycle
durations are measured by counting
trips through program loops. That is
why the interrupt disable flag is set |SEI
instruction) at the top of the program.
However, any peripheral device which
still slows down the 6502 will interfere
w ith this program and m ust be
removed.

The subroutine labeled "BLOCK"
reads any block from a Commodore
tape and adds it to a memory buffer.
The m emory buffer used here begins at
$801 and extends to $8FFF. Since the
data field is repeated on the tape, the
program verifies that the second
occurrence of the data m atches what is
in memory.

The end of the file is signaled by a
zero byte in the data field. When the
file is fully loaded, the program writes a
“ T ” type file w ith the same nam e as it
finds in the file header. If no name is
fo u n d , th e d e fa u l t n a m e
"COMMODORE FILE” is used.

This program uses the DOS File
M anager for all disk operations.
Beneath Apple DOS by Don W orth and
Pieter Lechner explains in detail how to
use the File Manager from assembly
language.

S u m m a r y

A lth o u g h th e re m ay be le s s
cumbersome ways to transfer data
between computers, I went w ith this
m ethod because it d idn 't cost me any
money. One could call it a poor m an's
modem. The success of this program
dem onstrates the possibility of two
other cheap tricks: (1) It should be
possible for the Apple to write tape files
that are readable by Commodore
computers. (2) It should also be
possible to have a direct link between
the Commodore cassette interface and
the Apple cassette interface. The read
and write lines would, of course, be
crossed over. In addition there would
have to be a signal ground connection
and a fourth connection from an
annunciator output of the Apple's game
port to the cassette sense input of the
Com m odore's cassette port. The latter
connection would allow the Apple to
sim ulate the button-down condition of
the C2N tape drive.

Listing 1 (continued) . *****************
t
*

* SUBROUTINES *
* *

READ A BLOCK

INITIALIZE POINTER & CHECKSUM

9219 AD 05 03 BLOCK LDA START PTR = START

921C 85 08 STA PTR PTR — >
92 IE AD 06 03 LDA START+1 START OF BLOCK

9221 85 09 STA PTR+1

9223 A9 00 LDA #0

9225 8D 00 03 STA CHSUM

READ COUNT-DOWN BYTES

9228 A9 09 LDA #9 9 COUNT-DOWN BYTES

922A 8D 04 03 STA KDOWN COUNTER

922D A2 06 BL0CK1 LDX #6

922F 20 DA 92 JSR RDBYTE1

9232 A5 06 LDA BYTE

9234 29 7F AND #$7F CLEAR BIT 7

9236 CD 04 03 CMP KDOWN IS IT CORRECT

9239 D0 48 BNE ERR4 IF NOT, THEN QUIT

923B CE 04 03 DEC KDOWN

923E D0 ED BNE BL0CK1

9240 A2 06 LDX #6

9242 D0 02 BNE BL0CK3 BRANCH ALWAYS

READ DATA BYTES

9244 A2 0B BL0CK2 LDX #11
9246 20 DA 92 BL0CK3 JSR RDBYTE1 < NEXT DATA BYTE >

9249 A5 06 LDA BYTE
924B 4D 00 03 EOR CHSUM CHSUM =

924E 8D 00 03 STA CHSUM EOR OF ALL DATA

9251 A0 00 LDY #0

9253 A5 06 LDA BYTE

9255 AE 03 03 LDX SCAN LOAD OR VERIFY

9258 F0 06 BEQ BL0CK4 BRANCH IF LOADING

925A D1 08 CMP (PTR),Y VERIFY THIS CHAR

925C D0 31 BNE ERR2

925E F0 04 BEQ BL0CK5 BRANCH ALWAYS

9260 91 08 BL0CK4 STA (PTR),Y STORE THIS CHAR

9262 EA NOP ;TIME DELAY

9263 EA NOP

9264 E6 08 BL0CK5 INC PTR INCREMENT

9266 D0 02 BNE BL0CK6 BUFFER POINTER

9268 E6 09 INC PTR+1

926A A5 08 BL0CK6 LDA PTR ;PTR < FIN

926C CD 07 03 CMP FIN

926F A5 09 LDA PTR+1

9271 ED 08 03 SBC FIN+1 IF SO,

9274 90 CE BCC BL0CK2 GET ANOTHER CHAR

READ CHECKSUM BYTE

9276 A2 0B LDX #11
9278 20 DA 92 JSR RDBYTE1

927B A5 06 LDA BYTE

927D CD 00 03 CMP CHSUM ;D0ES IT CHECK

9280 D0 19 BNE ERR3 ;IF NOT, THEN QUIT

9282 60 RTS

ERROR TRAPS

O

o

o

©

©

©

©

©

No. 73 - July 1984 MICRO 61

Listing 1 (continued)

9283 A9 C4 ERR4 LDA #MESG4

9285 85 0A STA ADR
9287 A9 92 LDA /MESG4

9289 85 0B STA ADR+1
928B 20 62 93 JSR PRMESG
928E 00 BRK
928F A9 A7 ERR2 LDA #MESG2

9291 85 0A STA ADR

9293 A9 92 LDA /MESG2

9295 85 0B STA ADR+1
9297 20 62 93 JSR PRMESG

929A 00 BRK
929B A9 B4 ERR3 LDA #MESG3
929D 85 0A STA ADR

929F A9 92 LDA /MESG3
92A1 85 0B STA ADR+1

92A3 20 62 93 JSR PRMESG
92A6 00 BRK

92A7 D6 C5 D2 MESG2 ASC "VERIFY ERROR"

92B3 00 BYT 0
92B4 C3 C8 C5 MESG3 ASC "CHECK-SUM ERROR"

92C3 00 BYT 0
92C4 C3 CF D5 MESG4 ASC "COUNT-DOWN ERROR"

92D4 00 BYT 0

92D5 CE 04 03

t
DEC KDOWN

;READ A BYTE

WAIT FOR SYNC BIT

©

o

92D8 A2 02 RDBYTE LDX #2 160 PRINT "LISTING OF FILE:
92DA 20 55 93 RDBYTE1 JSR PULSE1 ";F$
92DD E0 43 CPX #$43 1500 HZ CYCLE 170 PRINT : PRINT
92DF 90 F7 BCC RDBYTE 180 PRINT D $; "OPEN ";F$
92E1 E0 56 CPX #$56 190 PRINT D$; "READ ";F$
92E3 B0 F3 BCS RDBYTE 200 :
92E5 A2 02 LDX #2 IF SO, 210 REM
92E7 20 55 93 JSR PULSE1 LOOK AT NEXT CYCLE

92EA E0 30 CPX #$30 2000 HZ CYCLE 220 REM GET ONE CHARACTER
92EC 90 EA BCC RDBYTE AT A TIME
92EE E0 43 CPX #$43 230 REM
92F0 B0 E6 BCS RDBYTE

240 :
DATA BITS 250 GET A $: A = ASC (A$)

255 IF A > 31 THEN PRINT "
92F2 A9 00 LDA #0 "; CHR$ (128 + A) ;:
92F4 8D 01 03 STA PAR CLEAR PARITY COUNT GOTO 250
92F7 A9 08 LDA #8 DO 8 BITS 260 IF A = 13 THEN PRINT "
92F9 8D 02 03 STA KNT ": GOTO 250
92FC 20 32 93 RDBYTE2 JSR GETBIT 270 PRINT " 8 " ; : GOTO 250:
92FF A5 06 LDA BYTE REM UNPRINTABLE CHAR
9301 6A ROR A ROTATE BIT 280 :
9302 85 06 STA BYTE INTO BYTE 290 REM
9304 4D 01 03 EOR PAR EOR THIS BIT WITH

9307 8D 01 03 STA PAR BIT 7 OF 300 REM ERROR HANDLING
930A CE 02 03 DEC KNT PARITY COUNT ROUTINE
930D D0 ED BNE RDBYTE2 310 REM

CHECK PARITY 320 :
330 PRINT : PRINT : PRINT :

930F 20 32 93 JSR GETBIT PRINT
9312 6A ROR A 340 PRINT D$;"CLOSE ";F$
9313 4D 01 03 EOR PAR 350 PRINT D $; "PR #0"
9316 10 01 BPL ERR1 360 END
9318 60 RTS

PARITY ERROR

Listing 2

"TEXTLISTER"

"BY ART MATHENY"

10 HOME :

PRINT

20 PRINT

PRINT

30 PRINT
40 PRINT TAB(6);

"THIS PROGRAM WILL LIST

A"

50 PRINT TAB(8);
"SEQUENTIAL TEXT FILE."

60 PRINT

"GIVE THE FILE
";F$

70 INPUT

NAME:

80 PRINT

90 PRINT "WHAT SLOT IS THE
PRINTER IN (0 FOR TV)":

INPUT SLOT

100 IF SLOT > = 0 AND SLOT

< = 7 THEN 110
105 PRINT "ENTER A NUMBER

BETWEEN 0 AND 7.":

GOTO 90
110 PRINT

120 D$ = CHR$ (4) :
REM < CTRL-D>

130 ONERR GOTO 330
140 PRINT D $; "PR #";SLOT

150 PRINT
PRINT

PRINT : PRINT

62 MICRO No. 73 • July 1984

Listing 3

10 PRINT"{CLR}

SAVE A RANGE OF MEMORY"

20 PRINT"WHAT IS THE":

INPUT"STARTING ADDRESS";
K1

30 PRINT"WHAT IS THE":

INPUT"ENDING ADDRESS";
K2

40 PRINT"WHAT IS THE":
INPUT "FILENAME »;F$

50 OPEN 1,1,2,F$

60 PRINT#1,K1;CHR$(13)

70 PRINT#1,K2;CHR$(13)
80 FOR K=K1 TO K2
90 PRINT#1,PEEK(K);

C H R $ (13)
100 NEXT
110 CLOSE 1
120 END

Listing 4

10 TEXT : HOME

20 PRINT "LOADING NUMERIC
DATA FROM A TEXT FILE"

30 PRINT "INTO A RANGE OF
M E M O R Y . "

40 PRINT

50 INPUT "WHAT IS THE
FILENAME ";F$

60 PRINT "WHAT IS THE
STARTING ADDRESS (ENTER
0"

70 PRINT "TO PUT IT AT

THE ORIGINAL ADDRESS)"
80 INPUT A1
90 PRINT CHR$ (4);

"OPEN ";F$

100 PRINT CHR$ (4);
"READ ";F$

110 INPUT Kl: INPUT K2
120 IF A1 = 0 THEN A1 = Kl

130 L = K2 - Kl + 1:
A2 = A1 + L - 1

140 PRINT

"CLOSE

230 END

";F$

JMCftO

Listing 1 (continued)

9319 A9 25 ERR1 LDA iMESGl
93 IB 85 0A STA ADR
93 ID A9 93 LDA /MESG1
93 IF 85 0B STA ADR+1

9321 20 62 93 JSR PRMESG
9324 00 BRK

9325 D0 Cl D2 MESG1 ASC "PARITY

9331 00 BYT 0

O

READ A BIT

SUBROUTINE RETURNS:

X=DURATION OF 1ST PULSE

Y=DURATION OF 2ND PULSE

CARRY SET IFF X > Y

9332 A 2 05 GETBIT LDX #5
9334 E8 GETBIT1 INX

9335 AD 60 C0 LDA TAPEIN
9338 30 FA BMI GETBIT1
933A E8 GETBIT2 INX
933B AD 60 C0 LDA TAPEIN

933E 10 FA BPL GETBIT2
9340 A0 00 LDY #0
9342 C8 GETBIT3 INY

9343 AD 60 C0 LDA TAPEIN
9346 30 FA BMI GETBIT3
9348 C8 GETBIT4 INY

9349 AD 60 C0 LDA TAPEIN
934C 10 FA BPL GETBIT4
934E 84 07 STY TEMP

9350 E4 07 CPX TEMP
9352 60 ; RTS

;READ A SINGLE PULSE

9353 A2 00

t

PULSE LDX m
9355 E8 PULSE1 INX
9356 AD 60 C0 LDA TAPEIN

9359 30 FA BMI PULSE1
93 5B E8 PULSE2 INX
935C AD 60 C0 LDA TAPEIN
935F 10 FA BPL PULSE2

9361 60 RTS

©

©

o

o

©

©

PRINT MESSAGES

150 PRINT "STARTING 9362 A0 00 PRMESG LDY #0

ADDRESS = ";A1 9364 B1 0A PRMESGl LDA (ADR),Y

160 PRINT "ENDING ADDRESS 9366 F0 08 BEQ PRMESG2 ;BRANCH IF ZERO

= ";A2 9368 09 80 ORA #$80 ;SET BIT 7

170 PRINT "LENGTH = ";L 936A 20 F0 FD JSR COUT1

180 PRINT 936D C8 INY

190 FOR K = A1 TO A2 936E D0 F4 BNE PRMESGl

200 INPUT X: POKE K,X 9370 A9 8D PRMESG2 LDA #$8D ;RETURN CHAR

210 NEXT K 9372 20 F0 FD JSR COUT1

220 PRINT CHR$ (4); 9375 60 RTS

9376

93 A3
94A3
9377

FILE MANAGER BUFFERS

WORKAREA DFS 1

SECTOR EQU WORKAREA+45
BUFFER EQU SECTOR+256

END

No. 73 • July 1984 MICRO 63

Subscribe to MICRO...
Save 20% and we'll send you a

BONUS GIFT
with your subscription!

Receive a coupon good for Each Disk contains a variety of programs
one MicroDisk of your choice. from Micro, all entered and ready to run on
A $15.00 Value _ FREE! y°ur machine. Saves time, avoids errors.

This offer expires October 31, 1984

Fill out the attached
card and mail today!

Each diskette includes all of the programs in BASIC and/or
Assembly Source, plus binary 'load-and-go' files. The price of
only $15.00 includes shipping and handling.

64 MICRO No. 73 ■ July 1964

(In PA 1-800-662-2444)
(MasterCard and VISA Accepted)

/NCftO
□ YES! Enter my subscription to MICRO
$24,00 per year and send me a BONUS GIFT
COUPON for one free MicroDisk.

□ Renew my subscription to MICRO for just $24.00
and send me a BONUS GIFT COUPON for one free
MicroDisk.

My mailing label number is MC_________________

Please rush my subscription and the BONUS GIFT I’ve checked to:

Name

I'm paying by: D C heck D M O
□ VISA C M C

Arirtrps*
Total Enclosed.$

V i^ a /M D #Pitw Statp 7 in

(A l l o w 6 - 8 w e e k s to r d e l i v e r y } Bonus Coupon offer expires Oct. 31, 1984 E xp . D a t e : __

HUGRO ’s Newest Software
M icroDisks

Send me the following MicroDisks at
$15.00 each prepaid

□ MD-1 Master Disk Directory
□ MD-2 Does'lt Monitor
□ MD-3 Accurate Printer
□ MD-4 Graphic Printer Dump
□ MD-5 COMPRESS

MicroCalc
The F u l l S c ree n C a lc u la to r

Easier than spreadsheet programs, does
c a lc u la tio n s of u n lim ite d leng th and
complexity on screen, links screens, saves on
disk or tape, provides formatted printer output.
Contains a 48'page manual and diskette.

□ MicroCalc for Commodore 64$29.95
□ MicroCalc for Apple ll/lle /llc $29.95
□ MicroCalc for Atari...................................$29.95

Please rush the Micro Software checked above to:

Name

I'm paying by: □ Check □ MO □ VISA □ MC

Total Enclosed: $
Address

City State Zip

M A residents add 5% sales tax. F y p Da t« :

IMCftO ’s Best Sellers
Mastering Your VIC-20
C o n ta in s 8 p ro je c ts and
p ro g ra m s .™ U t i l i t ie s ,
gam es — even a version of
“VisiCalc.” All 8 programs on
cassette to help you learn faster.
Makes learning to program you
VIC 20 fun.

□ Mastering Your VIC 20...$19.95

What’s Where
in the Apple

Revised new edition with Apple lie
inform ation added to original
atlas and gazetter. All Apple users
will find this book helpful in
understanding their machine and
essential for mastering it.

□ W hat’s Where in the Apple
@ $19.95

Best Sellers for
APPLE Users!

MICRO on the APPLE
P rogram m ing a ids, u tilitie s ,
games, enhancements. Together
Volumes 1, 2, and 3 contain over
100 programs oh diskette. Fully
documented and explained.

□ 3-Volume Gift-Boxed @ $59.95
□ Vol.2D Vol.3 $24.95 ea.

Please rush the MICRO Books I’ve checked above to:

Name

I'm paying by: □ Check □ MO
□ VISA □ MC

Address
Total Enclosed: $

Citv State Zip

| M A residents add 5% sales tax.
V i s a / M C #

F.xn. Hatf i:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 60, CHELMSFORD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

/AICPO
P.O. Box 6502
Chelmsford, MA 01824

Use This Postage
Paid Card to Ordei
the Next 12 Issues

of MICRO and SAVI
$6.00 Off

Newsstand Price!

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 60, CHELMSFORD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

/AlCftO
P.O. Box 6502
Chelmsford, MA 01824

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES Order Thesi

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 60, CHELMSFORD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

/MCRO
P.O. Box 6502
Chelmsford, MA 01824

le c tu r e

►BASIC Hex Loader
▼

by Robert M. Tripp
Requirements: Any BASIC

If you have an assembly listing or the
hex dump of a m achine language
program, getting it to load w ith BASIC
can be a real problem. BASIC likes to
work only in decimal, so you m ust
m ake the conversion from hex to
decimal and then type in the DATA
statem ents. For years, MICRO has had
to 'waste space' providing both the
'useful' assem bly listing and the
'necessary' decimal DATA statem ent
form of the same information. If there
was a simple way to input the natural
hex information, then this additional
dum p would not be required.

One solution is presented here in
Listing 1. It is a simple, short BASIC
program that w ill load hexidecimal
information. It is best understood
through a brief example. Suppose that
you have an assembly program that
starts as follows:

033C A5 7A ENTER LDA TXTPTR

033E 8D 70 03 STA TEMPLO

0341 A5 7B LDA TSTPTR1

and so forth. Normally you would have
to convert the hex information: A5 7A
8D 70 03 A5 7B etc. into the decimal
equivalents to generate the following
DATA statem ent:

DATA 165,122,141,112,3,165,123

The HEX Loader lets you use a DATA
statem ent of the form:

DATA "A57A8D7003A57B"

Listing 1
10 REM HEX LOADER R.M.TRIPP

11 READ X$:Z=LEN(X$):G0SUB 17:
MS=X:Z=2

12 READ HX$:J=1

13 X$=MID$(HX$,J,2)

14 IF X$="XX" THEN END

15 IF X$="YY" THEN GOTO 12

16 GOSUB 17:POKE MS,X:MS=MS+1:

J=J+2:G0T0 13
17 X=0:FOR 1=1 TO Z:

Y=ASC(MID$(X$,I,1)):

IF Y > 57 THEN Y=Y-7

18 Y=Y-48:X=X*16+Y:NEXT:RETURN

which is obviously m uch easier to
generate.

Using Hex Loader

The first DATA statem ent m ust be the
hex address a t w h ich th e hex
inform ation is to start loading. The
rem aining DATA statem ents each
consist of an ASCII string that contains
the hex data, term inated by the non
hex ASCII pair "YY” . The end of hex
inform ation is indicated by the non-hex
ASCII pair "XX” . For example:

10000 DATA "033C"
10010 DATA "A57A8D7003A57BYY"

10020 DATA "8D7103A900857AA902XX"

The program was w ritten to fit
neatly between lines 10 and 20 of your
typical BASIC program. You may want
to change line 14 so that it performs a
GOTO when done loading instead of
the current END. That is the only
change that should be required to add
this u tility to your programs.

Hex DATA Generator

The second listing is a special program
for the Commodore 64 that generates
the BASIC DATA statem ents from
in fo rm a tio n a lready ex is tin g in
memory. You may already have the
in form ation in m em ory from an
assembly, from entering it through a
m onitor, or as the result of running a
program. You specify the BASIC line
num ber to start using for the DATA
statem ents and the memory start and
en d in g ad d re sse s . T he p rog ram
autom atically generates all of the
DATA statem ents required by the Hex
Loader and then autom atically deletes
itself, leaving just the Hex Loader and
the DATA statem ents. It is really
pretty neat — and fun to watch in
operation, since m ost of the action is
on the screen. And, it can save you a lot
of time.

A short BASIC utility that loads
DATA written in Hexidecimal
notation. A special version for
the C-64 generates the DATA
statements.

Listing 2

1 REM HEX MAKER R.M. TRIPP
2 Z=4:INPUT "{CLEAR}BASIC LINE

NUMBER: ";LN

3 INPUT "HEX START ADDR: ";X$:

MS$=X$:GOSUB 30:MS=X
4 INPUT "HEX LAST ADDR: ";X$:

GOSUB 30:ME=X

5 PRINT "{CLEAR}";

MID$(STR$(LN),2);" DATA
CHR$(34);MS$;CHR$(34):

LN=LN+10:K=1:GOTO 7
6 PRINT "{CLEAR}";:K=0

7 FOR I=K TO 6:
PRINT MID$(STR$(LN),2);

" DATA ";CHR$(34);
8 FOR J=0TO10:X=PEEK(MS):

GOSUB 50:PRINT HL$;:MS=MS+1

9 IF M S > ME THEN PRINT "XX”;-
:I=6:

J=ll

10 NEXT J:PRINT "YY";CHR$(34):
LN=LN+10

11 NEXT I:PRINT"LN=";LN;":

MS=";MS; ":ME= ";ME
12 IF MS> ME THEN PRINT"{D0WN2}

GOTO 14":GOTO 16
13 PRINT "{DOWN2}GOTO 6":GOTO 16

14 PRINT "{CLEAR}";:F0RI=1T08:
PRINT I :NEXT:PRINT "GOTO 15":

GOTO 16
15 PRINT "{CLEAR}";:F0RI=9T016:

PRINT I:NEXT
16 POKE 631,19:FOR 1=1 TO 9:

POKE 631+1,13:NEXT:

POKE 198,10:END

20 REM HEX LOADER R.M.TRIPP

21 READ X$:Z=LEN(X$):G0SUB 30:'
MS=X:PRINT "{CLEAR}LOADING

FROM ";X$;" TO ";:Z=2

22 READ HX$

23 FOR J=1 TO 99 STEP 2:
X$=MID$(HX$,J,2)

24 IF X$="XX" THEN MS=MS-1:
GOSUB 40:PRINT MS$:END

25 IF X$="YY" THEN J=99:G0T0 27

26 GOSUB 30'• POKE MS,X:MS=MS+1
27 NEXT:GOTO 22

30 X=0:FOR 1=1 TO Z:
Y=ASC(MID$(X$,1,1)):

IF Y > 57 THEN Y=Y-7

31 Y=Y-48:X=X*16+Y:NEXT:RETURN

40 X=INT(MS/256):GOSUB 50:
MS$=HL$:X=INT(MS-X*256):

GOSUB 50:MS$=MS$+HL$:RETURN

50 H=INT(X/16):L=INT(X-H*16):

IF H > 9 THEN H=H+7

51 IF L > 9 THEN L=L+7
52 HL$=CHR$(H+48)+CHR$(L+48):

RETURN

No. 73 - July 1984 MICRO 65

L c f iio is

O # ° •
o Circles ^

• for the w
Commodore 64

O by Lester Cain

o •

An interesting
mathematical way to plot

circles on the C-64

=) O E

Editor’s Note: Foi easy method of
entering hex object in to a BASIC
program, see Hex Loader, by R. Tripp,
page 65.
= = in i-------- =ini = in i-------= i n i = ieii=

T h e programs contained in this article

will give a theory behind creating

circles on a C o m m a d o r e 64 specifical

ly, but generally on any 6502 computer

with HiRes capabilities. Also, it gives

necessary code to implement circles in

a g a m e or business type analysis.

Let us first discuss the problems

associated with creating a circle in a

HiRes environment. In an 8 bit screen

m e m o r y each m e m o r y address is m a d e

up of bytes containing 8 bits in s o m e

kind of sequential fashion. Unfor

tunately, most of the m ore popular

computers do not do this in the s ame

way. Therefore, a universal me t h o d has

been developed to visualize this screen

m e m o r y in a w a y c o m m o n to all con

figurations. This universal w a y of look

ing at a graphics screen is referred to as

World Coordinates X and Y, taken from

c o m m o n graphing methods, where X is

the horizontal axis and Y is the vertical

axis. T h e problem then is to draw a cir

cle in this X and Y environment. Using

the X and Y outlook, the only time the

actual screen layout comes into effect

is w h e n actually setting the computed

bit at its computed spot in the maze.

CIRCLE
O

DRAWING ROUTINES
PLOTS HIRES CIRCLE ON THE
COMMODORE 64.

0
CODE BY: LESTER CAIN

EXTERNAL GLOBL VARIABLES q

033C ST EQU $33C
m e X1L0 EQU ST
033D X1HI EQU ST+1 ©
033E Y1L0 EQU ST+2
0344 CXLO EQU ST+8
034 5 CXHI EQU ST+9 A
0346 CY EQU ST+10 U
0347 RAD EQU ST+11
0348 MODE EQU ST+12
00B0 SPLO EQU $B0 O
00B1 SPHI EQU SPLO+1

C000 ORG $C000
©

CIRCLE: PLOT A CIRCLE IN HIRES
ENTRY CONDITIONS:

CX AND CY SET BY CALLING n
RADIUS SET IN GLOBL RAD

EXIT CONDITIONS:
CIRCLE IS DRAWN IN HIRES

A
C000 AD 47 03 CIRCLE LDA RAD ; FETCH RADIUS
C003 8D 79 C0 STA DX ;SAVE AS FIRST DX
C006 A8 TAY ;COPY RAD TO Y
C007 20 2C Cl JSR MULT8 ;AND SQUARE IT ©
C00A 8D 77 C0 STA RSQLO ;SAVE FOR COMP.
C00D 8C 78 C0 STY RSQHI ; AND THE HI BYTE
C010 A9 00 LDA #$0 ; ZERO DY q
C012 8D 7A C0 STA DY
C015 20 7B C0 JSR COMPXY ;PLOT 1ST 4 DOTS
C018 EE 7A C0 LOOP INC DY } LEG -Hi
C01B AD 79 C0 LDA DX 0
C01E CD 7A C0 CMP DY ;45 DEGREES YET
C021 30 0C BMI LOOPl ;PLOT OTHER HALF
C023 AC 7A C0 LDY DY ;COMP OTHER LEG -
C026 20 FE C0 JSR COMLEG ;PLOT ANOTHER 1 0
C029 20 7B C0 JSR COMPXY
C02C 18 CLC ; FORCED JUMP
C02D 90 E9 BCC LOOP ©

C02F AD 47 03 LOOPl LDA RAD ;GET THE RADIUS
C032 8D 7A C0 STA DY
C035 A9 00 LDA #$00 ;ZERO DX ©
C037 8D 79 C0 STA DX
C03A 20 7B C0 JSR COMPXY ; COMPUTE THIS BAT.
C03D EE 79 C0 L00P2 INC DX ; INC Y Q
C040 AD 7A C0 LDA DY ; CHECK FOR = WILL
C043 CD 79 C0 CMP DX ;MEAN CIRCLE COMP
C046 30 2D BMI DONE ; CIRCLE DON
C048 AD 79 C0 LDA DX ;SWAP FUNCTIONS ©
C04B 8D 76 C0 STA TEMP
C04E AD 7A C0 LDA DY
C051 8D 79 C0 STA DX
C054 AD 76 C0 LDA TEMP {J

C057 8D 7A C0 STA DY jSWAP DONE
C05A AC 7A C0 LDY DY ;COMP. OTHER LEG

C05D 20 FE C0 JSR COMLEG ; COMPUTE NEW LENG q
C060 8D 76 C0 STA TEMP

66 MICRO No. 73 ■ July 1984

Announcing
New Software
From MICRO

★ Mastering Your
Vic-20(Cassette)

★ Mastering Your
Atari(Diskette)

★ Mastering Your
Commodore 64(Diskette)

Eight entertaining major projects
on cassette or diskette, plus a
160-190 page book, teach you
BASIC programming the easy way.
Run the programs, see what they
do, how they are constructed and
how they work.

P ro jects inc lude M icroca lc
(display calculation program for
complex math), Player (compose
and edit songs on your keyboard),
Master (guessing game for 1-2
p la y e rs) , C l o c k (c h a r a c t e r
graphics), and four more.

Each package only $19.95
(C-64 available in Sept.)

MicroCalc

Faster and easier to use than
spreadsheet programs, this fu ll
screen ca lcu lator is useful in
business, home and school. A
speedy w ay to learn BASIC
expressions if you don’t already
know them.

There is no lim it to the length
or com plexity o f ca lcu lations and
screens can be a u tom atica lly
linked, saved on disk or cassette,
and customized.

Only $29.95.
Available for C-64
Apple ll/lle, Atari

Micro, P.O. Box 6502
Chelmsford MA 01824

617/256-3649
Visa an d M astercard A ccep ted

C063 AD 7A C0 LDA DY
C066 8D 79 C0 STA DX o
C069 AD 76 C0 LDA TEMP
C06C 8D 7A C0 STA DY
C06F 20 7B C0 JSR COMPXY ; COMPUTE NEW SET
C072 18 CLC o
C073 90 C8 BCC L00P2
C075 60 DONE RTS ; RETURN TO CALL
C076 00 TEMP BYT 0 ;TEMP STORAGE
C077 00 RSQLO BYT 0 s j

C078 00 RSQHI BYT 0
C079 00 DX BYT 0
C07A 00 DY BYT 0 o

COMPXY: COMPUTES X,Y COORDINATES
IN EACH QUADRANT FROM DX,DY

ENTRY CONDITIONS: o
DX, DY COMPUTED BY CALLING PROGRAM

EXIT CONDITIONS:
A DOT IS PLOTTED IN EACH o
OF THE FOUR QUADRANTS
X1L AND Y1L ARE THE OFFSET IN 1
X2L AND Y1L ARE THE OFFSET IN 2
X2L AND Y2L ARE THE OFFSET IN 3 o
X1L AND Y2L ARE THE OFFSET IN 4

C07B AD 45 03 COMPXY LDA CXHI j HI CENTER d
C07E 8D F9 C0 STA X1H ;RT QUADS.
C081 8D FB C0 STA X2H ;LT QUADS.
C084 AD 44 03 LDA CXLO ; CENTER LO
C087 18 CLC o
C088 6D 79 C0 ADC DX
C08B 8D F8 C0 STA X1L
C08E 90 08 BCC CIP1 ;N0 OVERFLOW
C090 AD 45 03 LDA CXHI i IS HI ON o
C093 D0 03 BNE CIP1 ;SKIP INCREM.
C095 EE F9 C0 INC X1H ;UP RT HI+1

o
C098 AD 44 03 CIP1 LDA CXLO ; CENTER X
C09B 38 SEC ;-DX
C09C ED 79 C0 SBC DX
C09F 8D FA C0 STA X2L ;NEW PLOT X LO ©
C0A2 B0 03 BCS CIP2 ;N0 BORROW
C0A4 CE FB C0 DEC X2H ; HIBYTE OF X -l

C0A7 AD 46 03 CIP2 LDA CY ; CENTER Y ©
C0AA 18 CLC ;+ DY
C0AB 6D 7A C0 ADC DY
C0AE 8D FC C0 STA Y1L ;NEW PLOT Y LO ©

C0B1 AD 46 03 LDA CY ; CENTER Y AG.
C0B4 38 SEC ;-DY
C0B5 ED 7A C0 SBC DY o
C0B8 8D FD C0 STA Y2L ;L0 VALUE NEW Y

TRANSFER NEW VALUES TO X AND Y COORDINATES
AND PLOT THE FOUR NEW POINTS. w

C0BB AD F8 C0 LDA X1L ; UPPER RT. QD.
C0BE 8D 3C 03 STA X1L0 ;NEW X LO o
C0C1 AD F9 C0 LDA X1H ;N0W HI VAL.
C0C4 8D 3D 03 STA X1HI
C0C7 AD FC C0 LDA Y1L ;N0W DO Y
C0CA 8D 3E 03 STA Y1L0 ;0NLY LO VAL. 0
C0CD 20 78 Cl JSR PLOTXY ;PL0T UP RT.

C0D0 AD FA C0 LDA X2L ;GET NEW X n
C0D3 8D 3C 03 STA X1L0 ; Y DOES NOT W

C0D6 AD FB C0 LDA X2H ; CHANGE

No. 73 - July 1984 MICRO 67

©

©

o

©

o

©

C0D9 8D 3D 03 STA X1HI ;THIS TIME

C0DC 20 78 Cl JSR PLOTXY ;PL0T UP LT

C0DF AD FD C0
)

LDA Y2L ;CHANGE Y THIS

C0E2 8D 3 E 03 STA Y1L0 ;TIME

C0E5 20 78 Cl JSR PLOTXY ;PL0T LWR LT.

C0E8 AD F8 C0
1

LDA X1L ;CHANGE X THIS

C0EB 8D 3C 03 STA X1L0 ;TIME

C0EE AD F9 C0 LDA X1H ;S0 WE CAN

C0F1 8D 3D 03 STA X1HI

C0F4 20 78 Cl JSR PLOTXY ;PL0T LWR RT.

C0F7 60 RTS ;RETURN

C0F8 00 X1L BYT 0

C0F9 00 X1H BYT 0

C0FA 00 X2L BYT 0

C0FB 00 X2H BYT 0

C0FC 00 Y1L BYT 0

C0FD 00 Y2L BYT 0

COMLEG: COMPUTES UNKNOWN LEG OF TRIANGLE.

ENTRY CONDITIONS:
RADIUS (HYPOTENUSE) IN ACC., DY IN Y.

EXIT CONDITIONS:

; DX CONTAINS THE OTHER LEG.

C0FE 98 ’COMLEG TYA ;GET DY

C0FF 20 2C Cl JSR MULT8 ;DY*DY

C102 8D 2A Cl STA TEDYL ; RETURN LO BYTE

C105 8C 2B Cl STY TEDYH ;Y HAS HI BYTE

C108 AD 77 C0 LDA RSQLO ;R LO

C10B 38 SEC

C10C ED 2A Cl SBC TEDYL ;R LO -DY LO

C10F 8D 2k Cl STA TEDYL

C112 AD 78 C0 LDA RSQHI ;R HI

C115 F0 06 BEQ XY1 ;N0 HI BYTE

C117 ED 2B Cl SBC TEDYH ;R HI -DY LO

C11A 8D 2B Cl STA TEDYH

C U D AD 2k Cl XY1 LDA TEDYL ;(R)-(DY)L0

C120 AC 2B Cl LDY TEDYH ;HI BYTE

C123 20 45 Cl JSR SQRT ;SQRT OF

C126 8D 79 C0 STA DX jSAVE FOR DX

C129 60 RTS ;(R)-(DY)

C12A 00 TEDYL BYT 0
C12B 00 TEDYH BYT 0

M U L T 8 : 8 BITS BY 8 BITS
ENTRY CONDITIONS:

MULTIPLICAND IN Y, MULTIPLIER IN ACC.

EXIT CONDITIONS:

LO BYTE IN ACC. HI BYTE IN Y

00AC ANSLO EQU $AC

00AD PLIER EQU ANSL0+1

00AE CAND EQU ANSLO+2

C12C 85 AD ’m u l t s STA PLIER ;SAVE MULTIPIER

C12E 84 AE STY CAND ;SAVE MULTICAND

C130 A9 00 LDA #$00 ;INIT FIRST VALUE

C132 A0 08 LDY #$08 ;COUNTER 8 BITS

C134 46 AD MUL1 LSR ALIER jTST NEXT BIT

C136 90 03 BCC MUL2 ;IF OFF ROUND

C138 18 CLC

C139 65 AE ADC CAND ;IF ON, ADD

C13B 6A MUL2 ROR A ;SHIFT ANSWER 1

C13C 66 AC ROR ANSLO

C13E 88 DEY ;DEC POS. COUNTER
C13F D0 F3 BNE MUL1 ;LOOP 8 TIMES

Refer to Figure 1 as this discussion

proceeds. T h e first step will be to

define the center of the circle, referred

to as C X and CY. A n y value will do for

a starter, of course assuming it will fit

into the screen limitations. Let it be

C X = 100 and C Y = 100 for an even set

of figures to add to and subtract from.

Pick out a nice radius for the circle, say

R = 50. Divide the circle into 4

quadrants and picture inside each

quadrant a right triangle. O n e side will

be D X , the other side D Y and the

hypotenuse is the Radius. T h e first

point(s) to plot will be on the Radius.

N o problem so far; the first four points

are just + or - from the center of the

circle. But this is the end of the easy

part. T o compute the next point, add

one to the value D Y and using the

Pythagorean theorem, compute DX.

This formula says the u n k n o w n leg is

equal to the square root of the

(hypotenuse sq. - the k n o w n leg sq.|.

Since this value is the same in all of the

4 quadrants, only one computation is

needed. Depending on which quadrant

the point is in will determine whether

the values D X and D Y are added to or

subtracted from the center C X , C Y

values. In quadrant 1, D X is positive

and D Y is negative. Figure 1 gives each

quadrant D X and D Y values. T o get the

circumference point in terms of X and

Y, the D Y and D X values will be

68 MICRO No. 73 ■ July 1984

algebraically added to the C X and C X

center for each point on the circle.

N o w , it is time to call the plotting

routine 4 times, once for each

quadrant. Also this is where the plot

ting routine is m ore or less machine

dependent.

Continue incrementing D Y until it

is > = D X . This will plot half of the

circle from the horizontal axis right and

left. W h e n this point is reached, to

m a k e the circle c o m e together in a neat

fashion, it is necessary to swap D X and

D Y and plot from the top and bottom

towards the already plotted portion of

the circle. Continuing the plot without

the swap will leave gaps at the vertical

axis, because D Y has become larger

than D X , stretching integer arithmetic

beyond its limits of accuracy.

Listing 1 is the Basic loader to load

the machine code into m emory. Type it

in carefully and save often, especially

before trying to run it. T h e last 39 bytes

is a screen clear routine. Listing 2 is a

short d e m o to exercise the code. T ype

it and save it also. R u n the loader first,

then the d e m o routine. If all the data

statements were correct, the d e m o will

draw four sets of circles converging at a

peak in the center of the screen. These

t w o routines are limited to the C o m

m o d o r e 64 HiRes screen.

S o m e explanation of the D e m o is in

order to explain h o w to use the Circle

function.

Line

130

Line

140

Line

150

Line

160

Sets up the storage in the

cassette buffer and equates

the variables of the circle

parameters. C L is the

center, X value lo, C h X

value hi.

Video chip address, C Y is

storage for center of the cir

cle.

Turns on the HiRes 0

$2000 and clears it.

Sets the m o d e bit to draw.

Cl4l A8 TAY ;Y=HI BYTE
Cl42 A5 AC LDA ANSLO ;A=L0 BYTE
C144 60 RTS

SQRT: 16 BIT SQUARE ROOT
ENTRY CONDITIONS:

L0 BYTE IN A C C ., HI BYTE IN Y

EXIT CONDITIONS:
SQRT OF NO. IN ACC.

00AC L0 EQU $AC

00AD HI EQU L0+1

00AE L01 EQU LO+2

00AF HI1 EQU L0+3

Cl45 85 AC "sQRT STA L0 ;SAVE L0 BYTE

Cl47 84 AD STY HI jSAVE HI BYTE

C149 A2 01 LDX #$01 }START WITH FIRST

C14B 86 AE STX L01

C14D CA DEX ;SUBTRACTION REG

C14E 86 AF STX HI1 ;SQRT =0

C150 38 LOP SEC

C151 A5 AC LDA L0 jSAVE REM IN Y

C15 3 A8 TAY

C154 E5 AE SBC L01 ;SUB ODD FROM L0

C156 85 AC STA L0 ;0NE REM

C158 A5 AD LDA HI ;SUB 1 FROM HI

C15A E5 AF SBC HI1

C15C 85 AD STA HI ;HI REMAINDER
C15E 90 0D BCC DNE RESULT
C160 E8 INX

C161 A5 AE LDA L01 ;ADD 1 + CARRY

C163 69 01 ADC #1

C165 85 AE STA L01

C167 90 E7 BCC LOP ;N0 NEED TO UP HI

C169 E6 AF INC HI1 ;HI SUB +1
C16B D0 E3 BNE LOP

C16D 86 AC DNE STX L0 ;CHECK FOR ROUND
C16F C4 AC CPY L0 ;REM< N
C171 90 02 BCC RETS

C173 E6 AC INC L0 ;ROUND UP

C175 A5 AC RETS LDA L0 ;PUT SQRT IN ACC.
C177 60 RTS

PLOTXY : PLOTTING ROUTINE

USED IN GRAPHICS HIRES MODE
ENTRY CONDITIONS:

MODE IS SET TO 0,1,2
X IS IN X1L0 AND X1HI

Y IS IN Y1L0 AND Y2HI

EXIT CONDITIONS:
1 BIT IS SET FOR X,Y IN HIRES SCREEN

C178 AD 3 C 03 PLOTXY LDA X1L0 ;LINE=XAND7

C17B 48 PHA
C17C 29 07 AND #$07
C17E 8D 32 C2 STA LINE

C181 68 PLA
C182 29 F8 AND #$F8 jSTRIP X OF L0 3 B

C184 85 B0 STA SPL0 ;INITIAL POINT

C186 AD 3D 03 LDA X1HI

C189 85 B1 STA SPHI ;HI BYTE
C18B AD 3E 03 LDA Y1L0

C18E 29 07 AND #$07 ;STRIP Y OF HI 5 B

C190 18 CLC

C191 65 B0 ADC SPL0 ;AND ADD TO INIT.

C193 85 B0 STA SPL0

o

o

o

o

No. 73 - July 1984 MICRO 69

©

©

©

©

©

©

o

C195 A9 00
C197 65 B1

C199 85 B1

C19B AD 3E 03
C19E 4A

C19F 4A

C1A0 4A

C1A1 A8

C1A2 C0 19
C1A4 10 2C

C1A6 B9 00 C2

C1A9 18
C1AA 65 B0

ClAC 85 B0

ClAE B9 19 C2

C1B1 65 B1

C1B3 85 B1

C1B5 AD 48 03
C1B8 F0 19
C1BA C9 02

C1BC F0 29
C1BE C9 01
C1C0 D0 10

C1C2 98

C1C3 48
C1C4 AC 32 C2

C1C7 B9 F8 Cl
C1CA A0 00
C1CC 11 B0

C1CE 91 B0
C1D0 68
C1D1 A8
C1D2 60

C1D3 98
C1D4 48

C1D5 AC 32 C2

C1D8 A9 FF
C1DA 38

C1DB F9 F8 Cl
C1DE A0 00
C1E0 31 B0

C1E2 91 B0
C1E4 68

C1E5 A8
C1E6 60

C1E7 98
C1E8 48

C1E9 AC 32 C2
C1EC B9 F8 Cl
C1EF A0 00
C1F1 51 B0

C1F3 91 B0

C1F5 68

C1F6 A8

C1F7 60

C1F8 80 40 20
C1FB 10 08 04
C1FE 02 01

DETMOD

SETBIT

RE TP

ANDBIT

XORBIT

LDA #$00
ADC SPHI

STA SPHI

LDA Y1LO

LSR A

LSR A

LSR A
TAY

CPY #25
BPL RETP
LDA COLTAB,Y

CLC

ADC SPLO

STA SPLO
LDA RO W T A B ,Y

ADC SPHI

STA SPHI

LDA MODE
BEQ ANDBIT

CMP #2
BEQ XORBIT

CMP #1

BNE RETP

TYA

PHA
LDY LINE

LDA BITTAB,Y

LDY #$00

ORA (SPLO), Y

STA (SPLO), Y

PLA
TAY

RTS

TYA

PHA
LDY

LDA

SEC

SBC

LDY

AND

STA

PLA
TAY

RTS

LINE

#$FF

;ADD IN ANY CARRY

;R0W=INT(Y/8)

;GIVES INDEX
;DISALLOW OUTSIDE

;GRAPHICS RANGE

;GET LO OFFSET

;ADD TO LO 3 OF Y

;AND INITIAL POINT

;GET HI OFFSET

MODE 0,1,2
CLEAR WITH AND

CLR OR SET?

BAD VALUE

SAVE Y

INDEX

BIT VALUES

SET SPEC. BIT

RESTORE Y

,-USE RECIPROCAL

BITTAB,Y ;OF SET FUNCTIONS

#0
(SPLO),Y
(SPLO),Y

XOR WILL ALLOW
WRITING AND
ERASING OVER

OTHER GRAPHIC

VALUES

TYA
PHA
LDY LINE

LDA BITTAB,Y
LDY #$00

EOR (SPLO),Y
STA (SPLO),Y

PLA
TAY

RTS

TABLE OF BIT VALUES TO SET IN A

BYTE INDEXED BYT VALUE FOUND IN LINE

BITTAB BYT $80,$40,$20
BYT $10,$08,$04

BYT $02,$01

LO BYTE VALUES SCREEN ADDRESSES
TOP TO BOTTOM ASSUMING STARTING

ON AN EVEN BOUNDARY

Line

170 Initial values of Radius,

center X and Y.

Line

180-250 D r a w s the four sets of

circles.

Line

260 Kills s o m e time, changes

background color and starts

over again.

Line

280 If C X is > 255 then m a k e

low value -255 and sets hi X

to 1.

Line

290 Poke the Center value of

Circle to area for the

machine code to use. Set

the Radius and draw the cir

cle.

Line

310 Resets the screen to nor

m al LoRes m o d e and quits.

G O T O 310 after a break to

reset.

Line

320 Call screen clear routine.

Three parameter are necessary to

draw the circle:

1) A Center X lo and Center X hi

(0-320). C L and C H in D e m o .

2) A Center Y lo value. (0-200). C Y in

D e m o .

3) A radius (0-255). R in D e m o .

T h e circle will wrap around on the

X axis and will clip at Y greater than

200 or less than 0 on the Y axis. Funny

things happen if the Y value exceeds a

value or 200, so the routine will clip for

you.

I have included the assembly

language source for assembly buffs and

for added explanation of the theory. All

the routines with the exception of

P L O T X Y should be adaptable to any

machine with HiRess capabilities.

C I R C L E is the master routine. It

squares the Radius and saves it for the

remaining computations, and plots the

first four dots. At L O O P D Y is

incremented and checked if > = DX, if

70 MICRO No. 7 3 -July 1984

not the next four points are computed

and plotted. W h e n the test passes,

L O O P l swaps D X and DY. T h e plot

direction here is from vertical axis,

right and left. W h e n D X becomes =

D Y , the circle is complete and a return

is made.

C O M P X Y does the adding and

subtracting of D X and D Y from the

center point. After each quadrant is

computed, the n e w X and Y values are

set to on by calling the plotting routine.

C O M L E G finds the u n k n o w n value

D X using the Pythagorean formula, the

Radius squared is c o m p u t e d in

CIRCLE.

M U L T 8 is an 8 bit multiply

routine. A n 8 bit multiply was chosen

due to speed, and anything over 255

would be out of range of most screen

displays, since this would only be half

of the total in the Circle.

S O R T returns an 8 bit square root of

the u n k n o w n leg of the right triangle.

Final value is rounded towards the

integer value the remainder is closest

to.

P L O T X Y is the machine dependent

routine m a d e to w o r k o n the

C o m m o d o r e 6 4’s H i R e s screen.

Basically it uses the formula from the

Programmer's Reference for setting a

bit on the HiRes screen. W h e r e it

deviates is the final w a y it determines

the byte on the screen. T h e m o d e of

plotting the bit is determined from the

value in T h e Globl M O D E . T h e bit can

be set with an OR, cleared with an

A N D or toggled with an X O R . T h e X O R

will allow an object to be drawn on top

of another and then erased, leaving the

object u n d e r n e a t h undisturbed.

However, the X O R doesn't w o r k very

well on the circle, due to an occasional

overlap of bits at the meeting point of

the circle halves. Look over this

routine as it can be used to plot a bit at

X and Y from any kind of function

(circle, line, rectangle, etc.).

C L E A R clears the HiRes screen and

sets screen color to the value found at

Address 02, poked here by the Basic

D e m o .

JMCRO

C200 00 40 80

C203 C0 00 40

C206 80 C0 00

C209 40 80 C0
C20C 00 40 80
C20F C0 00 40

C212 80 C0 00

C215 40 80 C0

C219 20 21 22

C21E 26 27 28
C222 2B 2C 2D

C226 30 31 32
C22A 35 36 37
C22E 3A 3B 3C

C232 00

C233 A9 20

C235 AA

C236 85 B1
C238 A9 00
C23A 85 B0

C23C A0 00
C23E 91 B0

C240 C8
C241 D0 FB

C243 E6 B1

C245 CA

C246 D0 F4

C248 A5 02

BYT $C0,$0,$40

BYT $80,$C0,$0

BYT $4-0, $80, $C0

BYT $0,$40,$80
BYT $C0,$0,$40

BYT $80,$C0,$0

BYT $40,$80,$C0,$0

HI BYTE VALUES
TABLE ASSUMES HIRES STARTS ’ $2000

ROWTAB

LINE

;CLEAR

CLEAR

CLR

CLRl

BYT $20,$21,$22,$23,$25
BYT $26,$27,$28,$2A

BYT $2B,$2C,$2D,$2F

BYT $30,$31,$32,$34
BYT $35,$36,$37,$39
BYT $3A,$3B,$3C,$3E

BYT 0 ;L0 3 BITS

CLEAR HIRES SCREEN ’ $2000

C24A 9D 00 04

C24D 9D 00 05

C250 9D 00 06

C253 9D 00 07
C256 CA
C257 D0 FI

C259 60
C25A

COLOR

LDA #$20
TAX

STA SPHI

LDA #$00

STA SPLO

LDY #$00

STA (SPLO),Y

INY
BNE CLRl

INC SPHI

DEX
BNE CLR

LDA $02

STA $0400,X

STA $0500,X

STA $0600,X

STA $0700,X

DEX

BNE COLOR

RTS
END

NUMBER OF PAGES
SET UP SCREEN

ADDRESS

;D0 20 PAGES

VALUE POKED IN

FROM BASIC

FIRST PAGE OF

LO RES SCREEN

o

100 REM — CIRCLE DEMO —

110 REM — CIRCLE ROUTINE RESIDENT —

120 REM — g $C000

130 TS=828:CL=TS+8:CH=TS+9:RAD=TS+11:M0DE=TS+12
140 V = 53248:CY=TS+10:POKE 2,1

150 POKE V+17,59:POKE V+24,24:GOSUB 320

160 POKE M0DE,1
170 R = 4 0 :CX=100:Y=100

180 FOR 1=1 TO 12:C1=0

190 GOSUB 2 8 0 :CX=CX+5:R=R-3:NEXT:C2=CX:R1=R

200 C X =CX+5:FOR 1=1 TO 12:C1=0

210 GOSUB 2 8 0 :CX=CX+5:R=R+3:NEXT
220 R=R1:CX=C2:F0R 1=1 TO 12:C1=0

230 GOSUB 2 8 0 :Y=Y-5:R=R+3:NEXT
240 Y = 1 0 0 :R = R 1 :CX=C 2:FOR 1=1 TO 12:C1=0
250 GOSUB 2 8 0 :Y=Y+5:R=R+3:NEXT

260 GOSUB 330:A=A+1:IF A > 31 THEN A=1

270 POKE 2,A:GOSUB 320:GOTO 170

280 CS=CX:IF C X > 255 THEN CX=CX-255:C1=1
290 POKE CL,CX:POKE CH,Cl:POKE CY,Y:P0KE RAD,R:SYS 49152:

CX=CS:RETURN

310 POKE V+17,27:POKE V+24,21:END

320 SYS 49715:RETURN

330 FOR T=1 TO 3000:NEXT T:RETURN

Q

No. 73 ■ July 1984 MICRO 71

coca ------------------------

Graphicom and the
Koalapad

Chicago Rainbowfest

Over a year has gone by since the first Color Computer

only show, Rainbowfest. Since that first s h o w in Chicago,

there have been several around the country, most have

been too far away for m e to attend. I a m looking forward to

traveling to Chicago again for the next Rainbowfest.

At the last show, I enjoyed meeting m a n y of the people

w h o have m a d e the Color C o m p u t e r one of the most

expandable and usable computers on the market. Also,

m a n y people w h o have written powerful software were in

attendance. This s h o w should be no different; ii you can

attend, please look for m e and say hello.

Graphicom and the Koalapad

This month, I m u s t c o m m e n t in m o r e detail about one

of the best graphic oriented programs I have seen for the

Color Computer, Graphicom. Yes, Graphicom is fun for

the kids to play with and also interesting, but don't

dismiss it as another toy program. For example, I have two

practical and useful applications. I use it to create logos

and designs for m y c o m p a n y products. In addition, I use it

to draw and print schematic diagrams. There are m a n y

other applications that relate to graphics in a practical

business and personal sense.

Drawing with Graphicom requires a single joystick and

two fire buttons. O n e option, however, is to use a

Koalapad, modified to fit the Color Computer. For those of

you w h o m a y be unaware, the Koalapad is a small drawing

tablet that plugs into the joystick port of several different

types of computers. There are versions for the Apple,

Atari, C o m m o d o r e , I B M PC, and other personal

computers, and it comes withth software that allows the

use of this sophisticated digitizer.

Koala Industries, however, has not seen fit to m a k e a

version of the Koalapad for the CoCo. T h e enterprising

people at Cheshire Cat Software (creators of Graphicom]

have included modification instructions to enable the use

of the Koalapad with their software. After following these

instructions, I found the pad to be a useful tool for other

joystick applications as well. Essentially, the pad is an

unusual joystick. If nothing is being pressed on the face of

the pad, the joystick port returns coordinates of 32,32 (the

joystick is centered). If you use a finger or other object to

press on the face of the pad, the joystick port reports the

coordinates of the location of the pressure on the pad.

M o v i n g the finger, or the w o o d "pencil” that comes with

the pad, will cause the joystick coordinates to change in

relation to the n e w location. T h e result of all this is that

the modified Koalapad can be used anywhere you can use a

standard joystick.

by John Steiner

This n e w application of a joystick intrigued me, and I

have found other joystick software that can use the

Koalapad to better advantage than a standard joystick. It

occurred to m e that other people might be interested in

using the Koalapad for use with Graphicom, or for other

purposes. I contacted Bob Rosen of Spectrum Projects,

publisher of the Graphicom program, and he gave m e

permission to pass along the modification instructions to

you.

T h e modification instructions are for the Atari version

of the Koalapad. I d o n’t k n o w h o w m u c h difference there

is between versions, so you might be sure to get the Atari

version. T h e pad retails for around $100.00, but I have

seen t h e m on sale for less than $80.00. In addition to the

pad, y ou will need a six conductor cable, two 1 M e g o h m

resistors, and one or two din plugs that fit the joystick

port. A 9 to 12 volt supply is also required.

Figure one contains a circuit board layout of the pad. It

is easy to interpret the drawing, once you take the screws

out of the bottom of the pad. B y the way, there is one

screw underneath the label that is stuck to the bottom of

the pad. R e m oving this screw will void your warranty on

the pad, so you might want to have the store you

purchased the pad from check the pad to m a k e sure it is a

working unit before you take it apart.

F r o m the diagram in figure 1, the six wires are

connected as follows:

Step 1 to pin 1 of the right joystick din plug.

Step 2 to pin 2 of the right joystick din plug.

Step 3 to pin 4 of the left joystick din plug. (See next

paragraph).

Step 4 to pin 4 of the right joystick din plug.

Step 5 to pin 3 of the right joystick din plug and minus of

the 8.3 volt supply.

Step 6 to positive of the 8.3 volt supply.

Figure 1
EttflificaUon of Atari.

Koala Pad for CoCo
joystick Port O f 7RS80
COLOR CDrPUTDP.

Merely add 6 wires
to the board, solder in
two resistors and add
8 .3 power supply .

1) Hook up X axis to
in 4 of 339 c h i p .
) h o o k u p Y a x i s t o
i n 6 o f 3 3 9 C h i p ,
> Connect left fire

D u t t o n .
4) Connect right fire
b u t t o n .
5) Connect to ground
6) Connect 8.3 'jolts

fidd two 1 meg ohm
resistors as snouri

nn.
koa ia

72 MICRO No. 73 - July 1934

T h e Koalapad has two "fire” buttons on the top of the

pad. T h e right joystick and fire button connections are

hooked to a single din plug. T h e left fire button is

connected to the other din plug for use with Graphicom. I

preferred to have only one fire button hooked up to the

pad, thus allowing m e to have a standard joystick, or

remote footswitch in the left joystick port. With

Graphicom, the left joystick is not used, only the left fire

button. If you are using the tablet with other software, you

m a y want the flexibility of having a joystick and Koalapad

in either port at the sam e time.

Figure two is a schematic of a simple 8.3 volt regulator

that is used to obtain power for the Koalapad. T h e manual

states that the 8.3 volts there is quite critical, so they

r e c o m m e n d regulating it. Because I was in a hurry to see

h o w it worked, and had an old nine volt A C power supply

sitting around (one of those that contain a small

transformer that plugs into the wall, and a small cord that

ran to a nine volt battery snap), I used it. I found that the

load on the Koalapad pulled the 9 volt supply d o w n to 8.45

volts. T h e pad seems to wor k fine. I would, however,

follow their recommendations on regulating the supply, if

you plan on heavy duty use of the pad.

This simal e s c h e m a t i c shows hou to use a
7 805 voltage regulator as a v a r i a b l e
v o l tage regulator that sets a +12 uol t
input, a nd y i e l d s a v o l t a g e tho. can be
ad j u s t e d to the a p p r x i m a t e l u +8-3 volts
r e q u i r e d by the C oCo Koala Pad mod.

+ 12 V o- 7805

R 1
R2

1000 ohm s (fixed)
1000 ohm s <varible>.

jRI

+5 to
+ 1 IV

rR2

of f your
r urn i ng

I suggest g e t t i n g your + 12V from
Color Co m p t e r ' s motherboard» and
it to your pad via the center pin of the
Joystick connector- You'll have to
disconnect this pin from ground and then
connect it to + 12V on your CoCo board.

Figure 2

Figures one and two were both created using

Graphicom, by the people at Cheshire Cat Software, and

are reprinted from page 32 of the Graphicom software

manual by permission of Spectrum Projects. These two

illustrations should give you an idea of the usefulness and

power of the Graphicom software.

After these simple modifications, plug the pad into the

right joystick port, and run the following test program.

10 C L S

20 A = JOYSTK(0):B = JOYSTK[1)

30 P R I N T @224,A,B

40 G O T O 20

W h e n you run the program, it should print 32 S P A C E S

32 on the screen, indicating the two values being read in

from the right joystick port. Use the w o o d pencil to touch

the very upper left hand comer of the pad. T h e numbers

should change to 0,0. If you press on the lower right hand

corner, it should return 63,63. Mo v i n g the stick on the pad

should cause the numbers to change with respect to the

position of the stick.

I have had a lot of fun with the pad, and pass this

information along to those of you w h o like to experiment

with hardware. T h e process is fairly simple. If you try the

modification, and have any problems, you m a y give m e a

call in the evening at 701-281-0549.1 will try to help. Hav e

fun, and if you develop any software that uses the pad, let

m e know. T h e pad is a useful, and interesting accessory for

the CoCo.

JMCftO

A Note to Our Readers: In the last issue [Micro 72:26) w e
printed an article on a Better R a n d o m N u m b e r Generator.

D u e to problems with our typesetting equipment, w h e n

w e transferred the text and program, all of the special

symbols such as plus signs, equal signs, greater than, less

than, etc. were missing. This was brought to our attention

by the authors after the issue was already printed. T o

correct this problem, w e are listing the appropriate

changes for the text and reprinting the entire program

(minus the hex listing, since it was correct). W e are sorry

for any inconvenience this m a y have caused and assure

you that the problem has been rectified. Thanks.

In the text wherever R[I1], R[I2],..., R[IK], R[N1], etc.

appear there should be a plus sign between the letters and

numbers in the brackets — R[I+ I), R[I + 2], etc.

Page 28, 2nd para., should read R[I + 1] = R|I] + 1

Page 29 , last para., should read (R[N]/m)

Page 31, under Combination of R N G ’s, 2nd para., should

read R A N D O M = X R A N [Y * 100]

Page 32, 1st para., should read R A N = U S R (S E L E C T)

Page 32, 2nd column, 4th para., should read

(A + B) m o d C = (A m o d C + B m o d C) m o d C

1 2 3 4 5

X 1 1 1 1 1

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 3 7 1 6 5 2 9 5

No. 73 ■ July 1984 MICRO 73

********************* BPL TRNSFR IF NO, DO NEXT
* # > IF YES, MULTIPLY.

* A BETTER RANDOM NUMBER GENERATOR * LDX #$04 INDEX # OF BYTES
* FOR APPLESOFT * STX BYTCNT KEEP TRACK OF # BYTES
* # t DEALT WITH SO FAR
* COPYRIGHT 1984 * NXTBYT LDA MULT,X LEAST SIGNIF BYTE
* THE COMPUTERIST INC. * STA MULTMP
* ALL RIGHTS RESERVED * LDY #$07 COUNT # BITS
* # MULPLY LSR MULTMP GET LEAST SIG BIT.

BCC SHIFT BIT=0 DON'T ADD.
********************** CLC BIT SET, SO ADD

ADD LDA OLDRAN,X OLDRAN TO NEWRAN.

TO USE THE RNG SUBROUTINE, YOU MUST ADC NEWRAN,X

SET UP THE USR FUNCTION. STA NEWRAN,X

SEE EDITORIAL NOTE DEX ALL BYTES DONE

BPL ADD NO ADD NEXT

LOAD IN PARAMETERS FOR THE RNG'S CLC YES, SO PREPARE TO

\ SHIFT OLDRAN (IE

Z: RAN=(3l4l5938565*OLD+24607)MOD20 t MULT * 2). DROP LAST

t CARRY AS IT IS

ZADD BYT $00,$00,$00,$67,$27 t 0 MOD20 ANYWAY.

ZMULT BYT $07,$50,$89,$2E,$05 SHIFT LDX BYTCNT # BYTES TO SHIFT

ZRAN BYT $00,$00,$00,$00,$00 SHFTIT ROL OLDRAN,X

; Y: RAN=(84l3453205*OLD+9999l)MOD20 DEX BYTE LEFT

? BPL SHFTIT YES, SHIFT IT.

YADD BYT $00,$00,$01,$86,$97 LDX BYTCNT RECOVER # BYTES.

YMULT BYT $01,$F5,$7B,$1B,$95 DEY MORE BITS LEFT

YRAN BYT $00,$00,$00,$00,$00 t IN THIS BYTE

; X: RAN = (27182819621*01X4-3) MOD20 BPL MULPLY YES, MULT BY NEXT.

t DEC BYTCNT NO, DONE A BYTE.

XADD BYT $00,$00,$00,$00,$03 LDX BYTCNT ANY BYTES LEFT

XMULT BYT $06,$5-4,$38,$E9,$25 BPL NXTBYT YES MULT BY IT.

XRAN BYT $00,$00,$00,$00,$00 t

ADD LOOKUP TO BASE LOCS FOR LDY XYORZ y DONE. PUT THE

PARAMETER ADDRESSES FOR CURRENT RNG. LDX #$04 NEW RND INTO THE

LOOKUP BYT $04,$13,$22 ; Z, Y, X MOVRAN LDA NEWRAN,X RESPECTIVE RNG'S

STA LSTBAS,Y LAST RAN STORAGE.

XYORZ BYT $00 ; WHICH GENERATOR DEY

YTEMP BYT $00 ; Y-REG ON ENTRY DEX MORE TO MOVE

XTEMP BYT $00 ; X-REG ON ENTRY BPL MOVRAN YES, DO.

MULT BYT $00,$00,$00,$00,$00 \
OLDRAN BYT $00,$00,$00,$00,$00 ; DONE. NOW TO NORMALIZE FAC, ALIAS NEWRAN.

RNG PHP ; SAVE EVERYTHING

t
LDY #$28 $28 (40) BITS IN FAC.

STX XTEMP NRMLIZ LDA NEWRAN FIND HIGHEST SET.

STY YTEMP ROL # SIGNIFICANT =

JSR SIGN ; SEE EDITOR'S NOTE FOR t 28 - # NOT SET

; SIGN ROUTINE BCS BITSET LEAVE WHEN TOP BIT FOUND

; FAC HOLDS S OF USR(S) ROL NEWRAN+4 NOT FOUND YET, SO

. PUT FF IN A IF S < 0, ROL NEWRAN+3 GET RID OF THE 0

. PUT 0 IF 0, 1 IF S > 0 ROL NEWRAN+2 BIT AT THE TOP.

TAX ; FROM THIS ROL NEWRAN+1 Y WILL KEEP TRACK

INX ; DECIDE WHICH RNG ROL NEWRAN OF # OF BITS LEFT.

LDY LOOKUP,X ; VIA LOOKUP TABLE AND DEY ANY LEFT

STY XYORZ ; SAVE IT FOR LATER BNE NRMLIZ YES, KEEP LOOKING

t NO, ALL DONE.

NOW THAT WE KNOW WHICH GENERATOR, MOVE DEY PROTECT AGAINST

ITS CONSTANTS TO THE TEMP LOCS. t DIVIDE BY 0.
BITSET LDA #$00 PUT 0 IN FAC'S

LDX #$04 ; LOOP TO TRANSFER STA NEWRAN+4 SIGN BYTE.

TRNSFR LDA ADDBAS,Y ; RNG'S VALS TO TYA GET # SIG BITS

J STANDARD LOCS, I.E. CLC PUT IN FAC'S +$80

STA NEWRAN,X ; ADD CONST TO NEWRAN, ADC #$58 FORMAT: $58+$28=$80.

LDA MULBAS,Y ; MULT CONST STA RANEXP PUT IN EXPONENT

STA MULT,X ; TO MULT, t BYTE AND DONE.

LDA LSTBAS,Y ; LAST RND VAL FROM LDY YTEMP SO, UNSAVE

STA OLDRAN,X ; THIS RNG TO OLDRAN LDX XTEMP EVERYTHING

DEY PLP AND

DEX ; 5 BYTES DONE RTS SAY GOODBYE.

END

74 MICRO No. 73 ■ July 1984

N a m e : Printerfacelntelligent
Interface

Hardware: Printers: Diablo Hytyge I,

Hytype II, D E C L Q P - M

Xerox

Description: This unique printer

interface board is installed in the

printer rather than the computer, and

upgrades an older printer to perform

like the best Daisy Wheel printers.

M od e l D T 1 5 0 and D T 1 5 1 A intelligent

interfaces snap into place without

modifying the printer and provide all

standard configurations, including

R S 2 3 2 serial, Centronics parallel,

IEEE488, and Current loop.

Features include a u t o m a t i c

bidirectional printing, microspace,

proportional spacing, bold facing, auto

centering, variable pitch, self test and

debug modes. Accessories available

include a 16K buffer m e m o r y and a

front control panel for 16 functions.

Price: $395.00

Contact: Kuzara International

7770 Vickers, Suite 105

San Diego, C A 92111

619/569-9107

/
N a m e :

Hardware:

MasterType
Apple, Atari,

C o m m o d o r e - 6 4

Description: "Mastertype” is the best

selling educational software program,

having sold over 150,000. It teaches

typing and keyboard skills through an

exciting arcade g a m e format, and is

n o w the first software p r o g r a m

designed to teach Dvorak keyboard

skills on the Apple lie. T h e n e w version

has been enhanced with HiRes

graphics, scoring retention, and, in

addition to the 18 lessons on the

standard Q W E R T Y keyboard, five

lessons on the Dvorak keyboard.

T h e Dvorak keyboard increases

speed and comfort because the most

frequently used keys are placed on the

" h o m e r o w " beneath the typists

strongest fingers. It is beginning to gain

wide acceptence.

Price: $39.95

Contact: Scarborough System#

' . 25 North Boardway

Tarry to w n ' N Y 10591

914/332-4545

N a m e : B.I.-80 Column Adaptor
System: C o m m o d o r e - 6 4

Description: A high-quality 80 column

plug-in module that eliminates the

problems of snow, fuzziness, hashing

and interference. It gives o p t i m u m

clarity, even with a full screen of

characters, and can easily switch from

40 to 80 co l u m n display at any time.

B.I.-80 c a n be u s e d w i t h

C o m m o d o r e color monitors 1701 and

1703, or with any m o n o c h r o m e video

monitor. It is self-initializing, with

complete 80 c o l u m n operating system

and B A S I C 4.0 language built in.

C o m e s with one year warranty, and full

documentation, including a description

of the B A S I C 4.0 language.

Price:

Contact: Batteries Included

186 Q u e e n Street West

Toronto, O N m 5 v lzl

Canada

416/596-1405

N a m e :

System:

M e m o r y :

Decisions
Atari

48 K

Description: A n e w program that

provides assistance on making a logical

choice a m o n g several alternatives, for

both h o m e and business use. T h e

program is flexible enough to analyze

any multiple choice decision. Features

such as fully prompted inputs, help

screens, rapid re-analysis and thorough

reference m anual m a k e it easy to use.

Graphic output screens are easily

interpreted and a hard copy record is

provided to users with an 80-column

printer.

T h e program uses logical analysis

based on scientific principles. It is

available either on 5 1/4" disk or

cassette tape. Available at s o m e dealers

or by mail order.

Price: $37.50

Contact: Lateral Software

P.O. Box 605

Stanton, C A 90680

714/826-3970

No. 73 - July 1984 MICRO 75

N a m e : Interface Adapter Board
System: C o m m o d o r e 64

Description: T h e 6522 V I A (Versatile

Interface Adapter) input/output chip

interface adpater board allows 6522

programming techniques, covered in

m a n y available books, to be applied to

the C-6 4 for real-time control

applications. It allows full use of the

I R Q interrupt and, w h e n combined

with the C-64's m e m o r y capacity,

provides a powerful development

system and controller in one package.

Extensive application notes and

programming examples are included.

Each board includes two 6522s,

with total of four 8-bit bidirectional

I/O ports, eight handshake lines, four

16-bit timer/counters. U p to four

M od e l 64IF22 boards can be connected,

providing 16 8-bit ports.

Price: $169.00 for first; $149 for

each extra

Contact: Schnedler Systems

1501 N. Ivanhoe,

Dept. N R

Arlington, V A 22205

703/237-4796

N a m e : Apple SourceLink
System: Apple n, lie, II Plus

M e m o r y : M i n i m u m 4 8 K

D e s c r i p t i o n : C o m m u n i c a t i o n s

software designed to supplement the

use of T h e Source by personal

computer owners. It is compatible with

the n e w Apple m o d e m , as well as the

Hayes and Transend m o d e m products.

T h e software includes automatic dial

up and sign-on procedure for Telenet,

Uninet and Sourcenet networks,

simultaneous capture of data from T h e

Source into the Apple m e m o r y or disks,

including a capture editor and

simplified transfer of data from disks to

T h e Source. A n additional feature

allows Apple and I B M users to

automatically access any n u m b e r of

pre-determined services and databases

once online.

Contact: T h e Source

1616 Anderson Road

M c L e a n V A 22102

703/734-7500

N a m e : ScreenShooter
Hardware: C R T

Description: A simple w a y to take

photos and slides of a computer C R T

using Polaroid 600 High Speed color

film, Polachrome 3 5 m m instant

slide film, or conventional 3 5 m m

color or black and white films. T h e

outfit includes a Polaroid O n e Step

600 Camera, C R T hood, C R T hood

adapter, diopter lens and 3 5 m m S L R

camera bracket.

W h e n using the Polaroid O n e

Step, camera exposure is automatic.

Y o u place the Screenshooter against

the computer screen, view the

image through the camera and click

away. W h e n using a 3 5 m m S L R

camera, the camera's built-in

metering system is used to find the

exposure. Screenshooter comes with

a lifetime warranty (the camera has

a o n e year warranty).

Price: $169.00

Contact: N P C Photo Division

1238 Chestnut Street

Newton, M A 02164

617/969-4522

N a m e : Language Development
Software

System: Apple II/IIe (Atari

coming soon)

Hardware: O n e disk drive

Description: Currently available

languages in this product line

include Spanish, French, German,

Italian, Biblical Hebrew, M o d e m

H e b r e w and Arabic. In the near

future, Latin, Russian, Polish,

Swedish, and Classical Greek will

also be available. All programs teach

1000 of the most c o m m o n words in

the target language. W h e n words

have mor e than one meaning, the

program allows for these other

meanings, along with English

translation. A "Teach Yourself

Book''is included in the package for

additional information.

Each language program is menu-

driven with sequential review,

ra n d o m review and quiz options.

T h e software gives instant feedback,

tests, and percentage of correctness

through interactive learning.

Price: $56.95

Contact: Soflight Software

2223 Encinal Station

Sunnyvale, C A 94087

408/735-0871

N a m e : Bug Off!
System: Apple II or lie

M e m o r y : 64K

Language: Pascal 1.1 or 1.2

Description: A powerful tool that

saves time in testing and debugging

Apple II Pascal programs. T h e easily

installed package runs at near

execution speed and is totally

interactive. T h e c o m m a n d screen gives

you complete control and lets you

build and use your o w n macros. Stored

debugging c o m m a n d s let you start

where you left off and you can insert

breakpoints wherever you want them.

This package c o m e s with a

guarantee of total refund if you are not

satisfied and return it within 30 days of

shipment.

Price: $49.96

Contact: First Byte

2845 Tem p l e Avenue

LongBeach, C A 90806

213/595-7006

76 MICRO No. 73 - July 1984

N a m e : Fit and Trim
System: Apple n/IIe

M e m o r y : 64K R A M

Hardware: 1-2 disk drives, printer

optional

Description: This educational and

counseling program for weight

control features two units. T h e first

Educational unit provides general

information on eating and activity

changes needed for weight loss,

suggesting goals for aerobic, muscle

building and other activities. T h e

Counseling unit has Weight Review

(projections, current weight and

change progress displays), Eating

Review (analysis of food you eat,

showing calories and problem foods

with r e c o m m e n d e d changes), and

Exercise R e v i e w (analysis of

activities with weekly exercise

suggestions).

Five w e e k histories can be

summarized and recommendations

for weight change can be printed.

Capacity is 80 individuals per

diskette. T h e program can be copied

and is modifiable.

Price: $39.95

Contact: Andent, Inc

1000 North Avenue

Waukegan, IL 60085

312/223-5077

N a m e : Digital TLC-1
Hardware: A n y RS232 devices

Description: This is a three port

active switch that lets any two

RS232 devices share a third and also

communicate with each other. A n y

transmission format at any rate up

to 1 9 , 2 0 0 b a u d can be

accommodated and all connections

are m a d e via a six button control

panel with out switching transients.

Proper connection between the

transmitted and received data pins is

fully resolved with the TL C - 1 for

a n y c o m b i n a t i o n of D a t a

C o m m u n i c a t i o n Equip m e n t and

D a t a T e r m i n a l E q u i p m e n t .

Permitting 64 possible connection

combinations, all data paths are

monitored by six LEDs.

Price: $245

Contact: Digital Laboratories, Inc.

600 Pleasant St.

Wateitown, M A 02172

617/924-1680

N a m e : SpellPack
System: C o m m o d o r e - 6 4

Description: This powerful program

teaches your C-64 to spell and checks

an entire document in 2-4 minutes. It

contains a dictionary of over 20,000 of

the most c o m m o n l y used English

words, and allows you to expand this

by 5,000 specialized terms.

Each word is compared to the

dictionary and those not found are

highlighted in context, right on the

screen. If the word is misspelled, it can

be edited and instantly added to the

dictionary. If it is correct but not listed,

it can also be added immediately. It

accelerates the page rate of checking so

that a one page document m a y take two

minutes to check, but a five pager m a y

only take three minutes. Additions and

corrections are m a d e with single key

c o m m a n d . SpellPack works with most

major word processing programs.

Price: $

Contact: Batteries Included

186 Q u e e n Street West

Toronto, O N m 5 v lzl

Canada

416/596-1405

N a m e : 4 in 1
System: Apple

Description: A n enhanced database

m a n a g e m e n t system that simplifies

record-keeping at h o m e or business

by handling four separate functions:

word processing, list and label

making, calculations and data

management.

Major data processing operations

are combined in a single program so

there is no need to change disks m i d

project. For example, 4 in 1 can

perform calculations on defined

fields, then merge those fields plus

the results into forms or letters

created with the word processor.

Current tab stops and margin

settings are indicated onscreen, as

are m e n u options, prompt messages

and system operating messages.

Price: $129.95

Contact: Softsmith Corp.

1431 Doolittle Drive

San Leandro, C A 94577

415/487-5900

N a m e : Intec 300 Modem
System: Apple n/HPlus/lIe,

T R S 8 0 Model 3/4, I B M

P C

Description: A n e w auto dial/auto

answer m o d e m featuring software and

essential phone-computer interface

connections to function with several

computers. Also provided is easy to

follow, detailed documentation.

Features include data capture direct

to disk file as well as m e m o r y buffer,

255 n u m b e r auto-dialing telephone

directory with auto redial of last phone

number, non-ASCII file transfer,

optional add/delete of linefeeds,

transmission of true break signal, and

m a n y more.

Price: $189.00

Contact: Intec Corp.

West Bloomfield, M I

No. 73 - July 1984 MICRO 77

that of structured programming. T h e marriage of

programming skills and knowledge of the machine are

integral to the book as a whole. There are examples and

sample programs to aid the reader in learning both the

B B C microcomputer and structured programming using

BASIC. At the end of each chapter are problems, happily at

the back of the book answers are also provided.

Title: The RS-232 Solution
Author: Joe Campbell

Price: $16.95

Publisher: Sybex C o m p u t e r Books

T h e problem of interfacing your computer with any RS-

232-C peripheral is covered in this book. Using tools that

total less than $15.00, the reader is instructed h o w to

measure logic levels and conduct other tests. T h e results

of these tests are then taken to derive a specification for

a cable, thus m aking the correct connections. There are

ample diagrams and illustrations explaining the basics and

beyond, of serial interfacing. T h e author's 'fool-proof'

method is illustrated with real case studies. Case studies

include S B 8 0 / A D D S , N V O K I , KayPro/Epson, Osb/TnT,

and I B M / N E C . In addition to printers, the interfacing of

m o d e m s , terminals, and plotters is also explained.

Title. The Elements of Friendly Software Design
Author: Paul Heckel

Price: $8.95

Publisher: Warner Books

Taking the approach that software is a communication^

craft, the author draws u pon a variety of innovators ir

this area. Citing such greats as Walt Disney, George

Orwell and Leonardo D a Vinci, the idea of visuality and

clear communication in software is emphasized. All of the

elements of friendly software design are covered from thel

perspective of both the user and designer. Attention is\

given to what the user expects, perceives, feels and thinks;

all lending to a better understanding and foundation from

which to design software. Prototypes and innovations are

examined. Points are supported with a variety of pictures,

illustrations, etc. Thirty principles of software design are

given in addition to seven traps that catch experienced

designers.

Title: The BBC Microcomputer for Beginners
Authors: Seamus D u n n & Valerie M o r g a n

Price: $13.95

Publisher: Prentice/Hall International

This book covers the in's and out's of the B B C

Microcomputer, m o r e popularly k n o w n as the Acorn; both

models, A and B, are covered. In addition to noting the

various characteristics and options available on the B B C

microcomputer, programming in B A S I C is also covered. In

this vain, the book guides the reader in a learning by

doing process. Carefully sequenced programs take the user

through a variety of programming 'musts', including:

conditionals, loops, file management, functions, strings,

formatting, graphics, color, and sound. T h e approach is

Title: Microprogrammers Market 1984
Author: Marshall Hamilton

Price: $13.50

Publisher: Tab Books

Basically a sourcebook for programmers looking to sell

their program ideas, this listing covers hundreds of

companies. T h e information provided on each publisher

includes: C o m p a n y name, address, telephone number,

president, submission contact, microcomputer systems

covered, age of the company, company's publishing track

record, what they are looking for, payme nt methods, h o w

and w h e n submissions should be handled, response time,

current program sources, what types of programs are n o w

being sold and h o w they are marketed. In addition the

author provides a n u m b e r of valuable tips on writing,

submitting and selling. Listings are broken d o w n into

Business/Industry, Educational/Tutorial, Games, H o m e

Use, and Utilities.

Title: How to Make Love to A Computer
Author: Dr. Maurice K. Byte

Price: $3.95

Publisher: Pocket Books

For those w h o are really into their computer this book

is a must. Learn the heretofore unspoken secrets of h o w to

m a k e love to your computer. Every aspect is touched upon

in this K a m a Sutra of computer love making. F r o m the

first meeting to that special night together, all of the

in's and out's of computer romance are examined. Sexual

fears, tips from pros, computerotica, and the joy of

programming are a few of the m a n y areas this book covers.

Complete with photographs, this is not a book for

children.

Title: The Illustrated dBase II Book
Author: Russell A. Stultz

Price: $16.95

Publisher: Spectrum Books

A reference/tutorial for the popular dBase II software

program by Ashton-Tate. T h e author uses modules to

teach the reader h o w to use dBase II. With the aid of

examples and illustrations the beginning programmer is

guided through the world of database management.

Descriptions of dBase II files, h o w they are stored,

displayed, printed and edited are included. T h e

experienced programmer will find that this can be used as

a handy reference; educators will also find the concise text

helpful. T h e modules are alphabetically organized, with a

good index offering further reference support. All the

reader needs is dBase II, and 8- or 16-bit microcomputer

with at least 6 4 K R A M , a disk drive, and a printer.

78 MICRO No. 73 ■ July 1984

MICRO Program Listing Conventions

Commodore
LIST ING C64 KEYBOARD

Commands

(CLEAR) □ A CLR

(HOME] S3 HOME

(INSERT) !l A INST

(DOWN) $ CRSR DOWN
(UP) □ A CRSR UP

(RIGHT) H CRSR RIGHT
(LEFT) II CRSR LEFT

Colors

(BLACK) I CTRL 1 BLK
(WHITE) CTRL 2 WHT

(RED) 14 CTRL 3 RED
(CYN) CTRL 4 CYN

(PURPLE) 1 CTRL 5 PUR

(GREEN) ii CTRL 6 GRN

(BLUE) tea CTRL 7 BLU
(YELLOW) m CTRL 8 YEL

(RVS) s CTRL 9 RVS ON
(R V S O F F } m CTRL 0 RVS OFF

(ORANGE) = l

(BROWN) IS * 2

(GREY 1} 3 = 3

(GREY 1) H = 4

(GREY 2) sa * 5

(LT GREEN) ii s 6

(LT BLUE) a * 7

(GREY 3) ■■
■a « 8

Func t i ons

(F D ■ f 1

(F 2 > a A f 2

{F 3) 9 f3

(F4) K ■' f 4

CF5 > II f 5

t F 6) at " fi

(F7) ii f 7

(F8) ■ f 8

Special Ch ar ac:ters

{P I) ir A Pi Char

(POUND} £ Pound Sign

(UP ARROW) f Up Arrow

(BACK ARROW}*- Back Arrow

No. 73 ■ July 1984

A tari

Conventions used in ATARI Listings.

Norial Alphanumeric appear as UPPER CASE:
SAMPLE

Reversed Alphanuseric appear as lower case:
yES (y is reversed)

Special Control Characters in quotes appear as:
(coMand) as follows:

Listing Comand ATARI Keys

{UP} Cursor Up ♦ ESC/CTRL -
(DOWN) Cursor Down ♦ ESC/CTRL =
{LEFT} Cursor Left * ESC/CTRL +
{RIGHT} Cursor Right -*• ESC/CTRL *
(CLEAR} Clear Screen * ESC/CLEAR
{BACK} Back Space < ESC/BACK S
{TAB} Cursor to Tab ► ESC/TAB
(DELETE LINE} Delete Line □ ESC/SHIFT DELETE
(INSERT LINE) Insert Line □ ESC/SHIFT INSERT
{CLEAR TAB) Clear Tab Stop B ESC/CTRL TAB
{SET TAB} Set Tab Stop B ESC/SHIFT TAB
(BEEP) Beep Speaker □ ESC/CTRL 2
{DELETE} Delete Char. El ESC/CTRL BACK S
(INSERT) Insert Char. U ESC/CTRL INSERT
{CTRL A} Graphic Char. h CTRL A

where A is any 6raphic Letter Key

Non-Keyboard Commands

(DIS * '• C H R $ (8 >

i F N 8 * 1 CHR* < 9)

(LOWER CASE) CHR* <14)

(UPPER CASE) C H R I (142)

(‘RETURN) C H R * < 142!

(DEL.) C H R * (20)

(SPACE) C H R t U A Q l

N o t e s :

1. A represents SHIFT KEY

2. ■ represents Commodore Key in

lower left corner of keyboard

3. CTRL represents CIRL Key

4. Graphics ch aracters represented

in Listing by keystrokes required

to generate the character

5. A number directly after a (SfMBOLJ

indicates multiples of the SYMBOL:

(D0WN6) would mean DOWN 6 times

MICRO 79

Advertiser's Index
Andent, Inc.................................... 77
Batteries Included 75,77
Computer Mail Order In sF rtC v r, 1
Computerose Ins Back Cvr
Digital Laboratories 77
F. Ashton 18
First Byte 76
Indus-Tool 9
Intec Corp...................................... 77
Kuzara International 75
Lateral Software 75
MICRO Magazine 64 ,67 ,Ins Back Cvr
NPC Photo Division 76
Protecto 39,40,41
Safeware 14
Scarborough Systems 75
Schnedler Systems 7,76
Soflight Software 76
Softsmith Corp............................ 77
Specialty Electronics 9
The Source 76
Totl Software 31
Transactor 3

More Fun
Than The

French Foreign Legion
Join the elite corps of authors— Join MICRO!

We are looking for a few good writers who have
what it takes:
• a technical understanding of computers
• innovative techniques and programs
• good writing skills
• a desire to participate in an exciting and

growing field
• the ability to take old ideas beyond

themselves
• the willingness to contribute and make a

difference.
Don’t wait-send for your Writer’s Guide today.

Send a S.A.S.E. to:
Mike Rowe
MICRO INK

P.O. Box 6502
Chelmsford, MA 01824

□ E E DOE S H E □ H E

Next Month In MICRO
Features

The UCSD P-System — This is a more powerful
operating system than MS-DOS and the 8088, and,

]o n a 68000 machine, a very fast one, too. Reviews
of six 68000 machines are included.

Constructing 3-D Mazes — The program actually
gives you ra t’s-eye views o f the maze
corridors — and all in 3 1/2K of RAM.

Graphics Print for C64 — The third part of this
series adds a program that loads graphic files
from a number of popular graphic programs,
displays them and dumps them to a printer.

Atari/Epson Character Printing — The Atari puts
a tremendous variety of graphic characters on

□ screen; this program allows even custom
characters to be put on paper.

HE 3 B E 3 B E 3 S E

Hilister — The second of a two-part series, this
covers moving around within a program listing.

Alter T & S — Dump, in hex, any sector on a
diskette with Commodore format and then modify |
any byte in that sector without the loss of other
data.

Plus More...

Departments
Reviews in Brief
Spotlight
Software/Hardware Catalogs
New Publications
Interface Clinic
Lyte Bytes

3 0 E

80 MICRO No. 73 ■ July 1984

3
H
C

This famous book now contains the most comprehensive description of firmware
and hardware ever published for the whole Apple II family. A new section with
guide, atlas and gazeteer now provides Apple lie specific information.

• Gives names and locations of various Monitor,
DOS, Integer BASIC and Applesoft routines and
tells what they’re used for

• Lists Peeks, Pokes and Calls in over 2000
memory locations

• Allows easy movement between BASIC and
Machine Language

• Explains how to use the information for easier,
better, faster software writing

This expanded edition is available at the new low price of only $19.95

For the 35,000 people who already own previous editions,
the lie Appendix is available separately for just $5.00.

Please send me:
________ What’s Where in the Apple @ $19.95 ea.

(Plus $2.00 per copy shipping/handling)

Apple lie Appendix @ $5.00 ea. __
(includes shipping charges)

Mass residents add 5% sales tax $ __

Total Enclosed $

For faster service
Phone 617/256-3649

Name

Address

City

Signature .

Acct # .

State Zip

□ Check □ VISA □ MasterCard

Expires.

MICRO, P.O. Box 6502, Chelmsford, MA 01824

L

Take an active role in your
child’s development.

Parenting. The most important and
rewarding endeavor you’ll ever under
take, Gaze into your child’s eyes.
They're capturing all the wonders of
the world around him. and looking to
you for guidance.

Now you can gain a unique insight
into your child's world with Childpace,v
— an amazing new Child Development
Program for ages 3 to 60 months.

Share the precious firsts.
When w ill your baby dazzle you

with his first spontaneous smile? Stand
alone? Take that first wobbly step?

The first five years are filled with
continual growth and change. And
questions. So even if your child's a
toddler, you're still looking for answers.
When will he start dressing himself?
When should those random scribbles
turn into distinctive shapes?

Compare apples-to-apples.
Childpace lets you evaluate your

child's dexterity, language and social

skills in the privacy of your own home.
You enter information into Childpace,
then he attempts tasks that are appropriate
for his age group.

Childpace assesses his skill level
based on extensive research, not the
biased opinions of friends or relatives.
Childpace uses your child's chronolog
ical (actual) age.

Grow with your child.
As your child grows, the tasks change

to match his newly acquired skills. So
Childpace is just as valuable for a 48-
month old child as for an infant.
Childpace can even evaluate up to 16 dif
ferent children, and keep permanent
records on each of them. Snapshots
record your child's physical growth, but
Childpace documents his or her actual
development.

Track your child’s progress, and help
him develop specific skills. Childpace
also contains warning signals to alert you
to potential developmental problems at
an early age, before they hold your child
back. An ounce of prevention pays off.

Childpace. A fascinating glimpse into
the world of child development. And
more importantly, into your child’s wttrld.

Look for Childpace at your local com:
puter hardware or software store. If unable
to find it. send $39.95 to Computerose.
Inc. Please allow two weeks for process
ing. 30 day money back guarantee.

I 't'JQ Q < suS?cstcd | retail price
Childpace is

available for the
| Commodore 64 f
IBM PC® IBM
PC Jr.® Atari
800® Apple II®
and Radio Shack
Color Computer®*
•E ach is a registered tradem ark
of the rcspccfivc manufacturer

Computei&se
| We’re programming fo r life . ™

2012 East Randol Mil! Road Suite 223
Arlington. TX 76011 (817) 277-9153
© l9 8 4 Com puicrovc. Inc.

